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A Classical (Monetary) Model

Introduction

@ A simple model of a classical monetary economy.

o Perfect competition and flexible prices in all markets.

@ A useful benchmark for later analysis, but many of the predictions are
at odds with the empirical evidence.
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A Classical (Monetary) Model

Introduction

@ Households:

o Complete financial markets.
o Perfectly competitive labor market.

@ Firms:

o Competitive firms (monopolistic competition and sticky prices later).
o Cobb-Douglas production function with labour as the only input.

@ General equilibrium — a so-called DSGE-model (dynamic, stochastic,
general equilibrium).
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A Classical (Monetary) Model

Households

@ The representative household chooses labor supply, consumption, and
one-period bonds. Maximize discounted expected utility:

E Y. B5U (Cori Ners), (1)
k=0

where B is the discount factor.

o U — period utility
o C and N — consumption and employment (1— leisure).
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A Classical (Monetary) Model

Households

@ We use the following period utility function:

t

1-0o 1+¢
G~ N 2)
l-c 1+¢

U(Ce, Ny) =

where % is the intertemporal elasticity of substitution and % is the

Frisch labor supply elasticity.

° %7 measures how willing the household is to substitute consumption
over time when the real interest rate changes.

° %7 measures how labor supply increases when the real wage increases.
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A Classical (Monetary) Model

Households

@ Sequence of budget constraints:

P:Ci+ QB < B 1 + Wi Ny — Ty, (3)

e P — price of consumption goods.
e W and T — nominal wages and taxes (net of dividends from ownership

of firms).
e @ and B — price and quantity of one-period risk-free nominal bonds

that pay one nominal unit on maturity.

@ Solvency constraint.
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A Classical (Monetary) Model

Households

@ Let us look Lagrangian:

-0 1+
+ Qt+kBt+k — Biik—1 — Wepk Negk + Tegi]} (4)

00 Cl Nl‘HP
{ Yy B [ Lk L’;} — Atk [Peak Cesk

o First-order conditions:

oL, o

L = — AP = A= L

aC, G’ y =0= A = P

oL, Ny

— = NP+ AW, = A ==L

N, AW =0= At A

oL A
S5 = ~AQ+PE (A} =0 & = pE { )
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A Classical (Monetary) Model

Households

o We then get:

where Q); is period t real wage.
@ The optimality condition for labor supply:
o The real wage increases with hours worked (compensating for increases
in marginal disutility).

o Increases with consumption (which makes the "utility value" of the real
wage lower).
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A Classical (Monetary) Model

Households

@ Moreover, we have

BE, { (Cgl)antjl} - Q. (6)

where T1; 1 = % is gross inflation (and 71; = logI1; is the rate of
inflation).

@ The consumption Euler-equation:

o Reflects the household’s preferences for consumption smoothing.
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A Classical (Monetary) Model

Households

o Note that the nominal (risk-free) interest rate is defined as
ir = — log Q,

since @ is the period t price of getting one monetary unit in all
states in period t + 1.

o The bond yield is implicitely given by Q; = (1 +yl'e/d)_1.
o We therefore have i = — log Q; = log (1 + yield) ~ yield.

ECON 4325 January 22, 2009 10 / 35



A Classical (Monetary) Model

Households — More About the Consumption Euler-Equation

@ Consider the following two-period model:

ma Ctl_g +ﬁ t1+1(7
X
Ce,Ces1 | 1 —

@ Let the household’s budget constraints be:

PtCt — Q—St,
Pry1Cv1 = (1+1) S,

where S; is period t saving.
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A Classical (Monetary) Model

Households — More About the Consumption Euler-Equation

@ Household's problem

ax {((0— S0) /P

+p

(Se(1+1ic) /Pm)l‘”}

e FOC:

—C;U/Pt—{—ﬁC;r‘Tl (1+it)/Pt+1 = 0,

Ct+1 - -1 o 1
:B[( Ct> Ht+1 - 1+/t<:>

where r; is the real interest rate.
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A Classical (Monetary) Model

Households — More About the Consumption Euler-Equation

Consumption period t+1

- (L+r)

Consumption period t
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A Classical (Monetary) Model

Firms

@ There is a representative firm that has access to the following
production technology:

Yy = AN, (7)
where Y: and N; are production and labor input, and
log At = ar = p,a:—1 + €.
@ Price-taker in all markets (the labor market and the goods market).
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A Classical (Monetary) Model

Firms

@ The firm maximizes profits:

\r;:’alé [Pt Yt - WtNt] , (8)
s.t.
Y, = AN ® (9)
@ First-order condition:
Yi
t
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A Classical (Monetary) Model

Market Clearing

o All markets clear:

Yt = Ct, (]‘1)
NS = NI =N, (12)

@ In addition B; = 0 (zero net savings).
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A Classical (Monetary) Model

Log-Linearized Model — Households

@ Labor supply:
o We start by looking at the steady state:

CN? = Q,

e Then we log-linearizing labor supply:

eact—i-(pnt — ewt,
e+ el (c;—0)+e%p(n—0) = & +e(w;—0)
pnte +o0c: = wt

and % measures how much labor supply increases when the real wage
increases.
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A Classical (Monetary) Model

Log-Linearized Model — Households

@ Consumption Euler-equation:

_ Ct+1 -7 ].
1_[55{< &) Qtnm}'

an = p(g) ¢
= —i+rn=logB=—p,

o Steady state

where p is household's discount rate. This implies a steady state real
rate, r=i—7m =p.
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A Classical (Monetary) Model

Log-Linearized Model — Households

o Consumption Euler-equation (cont'd):

o Log-linearizing:

1

Ct

E, {e—v(c‘m—ct)e— log Q:—log Hr+1+|ogﬁ}
E; {e—U'(Ct+1—Ct)+(ft—7ft+1_P)}
e — %E¢ {o (cry1 — ) = ((ie = i) = (7me41 — 7))}

1.
Ercei1 — - (it — E¢tmtey1 —p) -
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A Classical (Monetary) Model

Log-Linearized Model — Households

@ The consumption Euler-equation:

1
Ct = EtCt+1 — E (rt — p) , (13)

where we have used r; = iy — E; 71441

@ Consumption smoothing: parameter % measures by how much
consumption increases when the real interest rate drops.

@ Consumption is a pure forward-looking — or jump — variable.
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A Classical (Monetary) Model

Log-Linearized Model — More one the Consumption Euler-Equation

@ Solving the equation forward gives:

- L= (t-p). 09

Q\l—‘

L .

where r- is related to long real rates.

@ Given the expectation hypothesis the relationship between short and
long (real) rates with maturity T, r,, is given by:

-
Z (revk —p

@ Therefore:
Lo T
r A~ Tr
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A Classical (Monetary) Model

Log-Linearized Model — Firms and Market Clearing

Firms
o Output
ye=ar+ (L —a)n, (15)
@ Labor demand
wt = }/t — nt, (16)

and we also have productivity a; = p,a;—1 + €.

Market clearing

o Consumption equals output:
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A Classical (Monetary) Model

Log-Linearized Model — Firms and Market Clearing

Money demand and monetary policy

@ We assume that (log-linearized) money demand is given by
me — pr = yr — N, (18)

where 77 is the semi interest rate elasticity.

@ Let monetary policy be given by:

Amt = pmAmt_]_ + ET. (19)
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A Classical (Monetary) Model

Results

@ Let us solve the model, i.e. show how the endogenous variables
depend the exogenous variables.

@ To this end, let us repeat the complete set of equations

¢t = Etcep1 — % (”t - P) '

Wt = Pny +0c¢y,

Yt = n¢ + ay,
Wt =Yyt — Ny,
Y = G,

ar = p,ar-1+ &

ECON 4325

re =iy — E¢7Te 4,

Wt — pt = Wy,

my — pr = Yt — i,
Amy = p, Am; 1 + €.
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A Classical (Monetary) Model

Results

@ “Classical Dichotomy"”: Real variables determined independently of
monetary policy (neutrality)

@ Optimal policy: undetermined.

@ Specification of monetary policy needed to determine nominal
variables.

ECON 4325 January 22, 2009 25 /35



A Classical (Monetary) Model

Results

@ Let us first solve for the monetary part of the model (and we now
assume that a; = 0).

@ Substitute for the nominal interest rate in the money demand
function using the Fisher equation:

—pt =0—1kE; {Pt+1 - Pt},
which can be written as

o 1
E, + ——m;s.
Pt = 1+ tPt+1 14y t

@ This can be solved forward to yield:

E —— | Ermipy.
1 tkz_:o(l‘i_ﬂ tMey
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A Classical (Monetary) Model

Results

@ We want to rewrite the relationship this in terms of changes in
nominal money:

1 Ui
= m;—m;+ ms + E:m +
Pt t t 1+17 t 1+17 tMiy1
Ul 1 7 7\
— Eim +— E, + | — ] E
1+7 mey1 1+yl+y tMe+1 <1+77) tMe42
+....
@ We can then write:
/a n
= m m; + E:m +
Pt t— _|_ mg 1_’_77 tMey1
2
Ui Ui
—_— E:m +—— | Em
17< ) tMe41 (1+;7> tie42
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A Classical (Monetary) Model

Results

@ The price level is therefore:

@ We can then write:

= + —E, e — E:A
Pt mg 1+17 tkgo(l_H?) tAMey

NP m

e If p,. > 0 (the parameter is often calibrated to to 0.5 based on
empirical evidence), the price level should respond more than
one-for-one with the increase in the money supply.

= m;+ Arnt

@ This prediction is in stark contrast to the sluggish response of the
price level observed in empirical estimates of the effects of monetary
policy shocks.
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A Classical (Monetary) Model

Results

@ We can solve the (real side of the) model explicitly as follows:
e Use the labor supply and demand equations and combine it with the

aggregate resource constraint:

Yt — Nt = @nt + 0y,

e Next, combine the above equation with the production function

(I-0)y = (1tz)()’t_at>
vy = Par

which only depend on productivity and Yo = %.
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A Classical (Monetary) Model

Results

@ The solution to the (real side of the) model is then:

4o >lifo<1
Vr = 1[Jyaatwherell]ya:0_(1_a)+q)+0é zi:iz—iii
e >0ifoc<1
- h = =0ifo=1
ny Pnadr Where 9, c(l-—a)+op+a <0:fg>1
o+ @
wt_ = T’bwaat Where lpna = 0-(1—0()—}—4)“*‘0(

rh—p = UlpyaEt {Aat+1} - = (1 - pa) Utpyaaf
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A Classical (Monetary) Model

Results - A Permanent Increase in Productivity in Cashless Economy

Parameters: 0 =1, =099, a =0, ¢ =1

a y
15 15
1 1
05 05
0 0
05 10 20 30 w0 08 10 20 30 40
c n
15 15
1 1
05 05
0 0
05 10 20 30 o 08 10 20 30 40
r w
15 15
1 1
05 05
0 0
05 10 20 30 o 08 10 20 30 40
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A Classical (Monetary) Model

Results - A Temporary Increase in Productivity in Cashless Economy

Parameters: 0 =1, =099, a =0, ¢ =1, p, = 0.95

a y
1 1
05 05
0 0
10 20 30 40 10 20 30 40
C n
1 1
0.5 05
0 10 20 30 40 0 10 20 30 40
r w
0 1
01 10 20 30 40 0 10 20 30 40
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A Classical (Monetary) Model

Money in the utility function

@ So far, money has only served as a unit of account (often referred to
as cashless economies).

@ We now assume that money generate utility:

M
U (Ct, =, Nt> (20)
Py
@ The budget constraint becomes:

PtCt + QtBt + MI‘ S Bt—l + Mt—l + WtNt - Tt- (21)
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A Classical (Monetary) Model

Money in the utility function

@ The optimality conditions are:

Un,t
—— = Oy, 22
Uce t (22)
BE, { UC,H-IHtJ:l} = @ (23)
Ucty1

UN t it
= = 1-Qx 24
UC,t Qt ]. + it ( )

@ Interpretation of the latter:

o LHS: increased utility from holding more money (in consumption units).

e RHS: alternative cost (one monetary unit, minus the cost of buying a
bond that gives one monetary unit in period t + 1, as is the case when
holding money).

ECON 4325 January 22, 2009 34 /35



A Classical (Monetary) Model

Money in the utility function

@ Two cases:

© Utility is seperable in real balances: neutrality.
@ Utility is non-seperable in real balances: non-neutrality.

@ Even in the case of non-neutrality there are very small real effects
from monetary shocks.

e Optimal policy: Friedman rule (zero nominal interest rate and
T = —p).
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