UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4330 – International Macroeconomics, spring 2012

Date of exam: Tuesday, May 29, 2012 Grades are given: June 13, 2012

Time for exam: 2:30 p.m. – 5:30 p.m.

The problem set covers 5 pages (incl. cover sheet)

Resources allowed:

No resources allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Exam in: ECON 4330: International Macroeconomics

Day of exam: 29 May, 2012

Time of day: 14:30-17:30

This is a 3 hour school exam.

Guidelines:

In the grading, the answers to the three problems will be given 1/3 weight each.

Problem 1 (weight 1/3)

Consider a two-period representative agent model for a small open economy. The representative agent has utility function

$$U = \log(C_1) + \beta \log(C_2)$$

The output levels in the two periods, Y_1 and Y_2 , are exogenously given, and there is a fixed interest rate r. There are no foreign assets initially. The country can borrow unlimited amounts from the outside world. This gives a lifetime budget constraint:

$$C_1 + \frac{C_2}{1+r} = Y_1 + \frac{Y_2}{1+r}$$

- 1. Find the optimal levels of consumption in the two periods.
- 2. Explain what the autarky real interest rate, r^A , is. Use the first-order condition for optimal consumption to find an expression for $1 + r^A$ as a function of the domestic growth rate $g = Y_2/Y_1 1$ and the discount rate $\delta = 1/\beta 1$.
- 3. Define the current account in period 1, CA_1 , as $CA_1 = Y_1 C_1$. Show that CA_1/Y_1 can be written as:

$$\frac{CA_1}{Y_1} = \frac{1}{2+\delta} \left[1 - \frac{1+r^A}{1+r} \right]$$

Interpret how the relative size r^A/r affects the sign of CA_1/Y_1 .

4. Assume that the rest of the world can be described as an agent with the same utility function, but with a different growth rate (denoted g^*)

and a different discount rate (δ^*) . Assume that both countries have the same levels of output in period 1, $Y_1 = Y_1^*$. Impose the correct market clearing condition for general equilibrium and show that the equilibrium interest rate is a weighted average of the two autarky rates r^A and r^{A*} . Give a short interpretation.

5. Assume that you are working as an advisor for the finance ministry in Germany. Use the concept of *debt overhang* to provide a short and non-technical explanation for why a heavily indebted country's economic performance may be affected by the risk of sovereign default.

Problem 2 (weight 1/3)

With reference to the Mean-Variance model in *Open Economy Macroeconomics*, we have the equilibrium condition for the foreign exchange market:

$$F_g = -f(\frac{B_{p0}}{E} + F_{p0}) - (1 - b)(\frac{B_{*0}}{E} + F_{*0})$$
(1)

where f and b denote optimal portfolio shares for the domestic (f) and the foreign investor (b). They are given by

$$f = \frac{\sigma_{ep}}{\sigma_{ee}} - \frac{r}{R\sigma_{ee}}$$
$$b = \frac{-\sigma_{ep_*}}{\sigma_{ee}} + \frac{r}{R\sigma_{ee}}$$

 σ_{ee} and σ_{pp} denote the variances of the rate of depreciation (e) and the rate of domestic inflation (p). σ_{ep} and σ_{ep_*} are the covariances between e and p, and between e and foreign inflation (p_*) . R is the coefficient of relative risk-aversion (R > 0) and r is the risk-premium

$$r = i - i_* - \mu_e$$

 μ_e is the expectation of the rate of depreciation, i and i_* are the domestic and foreign interest rates. Assume that μ_e is a constant parameter. The remaining symbols in (1) are taken from the balance sheet of the simple portfolio model in *Open Economy Macroeconomics*.

- 1. Explain what we mean by the term "supply of foreign currency to the central bank".
- 2. State a set of sufficient conditions for an upward-sloping supply curve in this model, and give a short economic interpretation of these conditions.

- 3. Give a brief explanation of how the supply of foreign currency is influenced by the investors' perception of depreciation risk and the degree of correlation between depreciation and inflation.
- 4. Consider the case of a downward sloping supply curve. What kind of investor behaviour may give rise to this case? Is a downward sloping supply curve consistent with stability in the market for foreign exchange?
- 5. Give an expression for $\frac{\partial F_g}{\partial r}$ and discuss how this derivative is related to the degree of capital mobility. What are the determinants of the degree of capital mobility in this model?
- 6. Assume a floating exchange rate regime and explain how the market equilibrium is affected by an increase in i.

Problem 3 (weight 1/3)

1. In this section we consider the Price specie-flow model given by the equations at the end of the exam set. Assume a fixed exchange rate regime with an exogenous domestic interest rate. Define $W'_* = \frac{EF_*}{P}$ as the real value of foreign debt measured in terms of the home good, and define the real exchange rate by $R = EP_*/P$. Show that in a long-run steady state, the equilibrium solutions for W'_* and R are determined by

$$C(\bar{Y} - i_*W'_* - G, -W'_* - W_g, i, i_*) + G = \bar{Y} - i_*W'_*$$
 (2)

$$i_*W'_* = X(R, \bar{Y}, Y_*)$$
 (3)

and comment on the interpretation of this result.

- Assume that the economy is initially in equilibrium. Make use of a phase-diagram to analyze the dynamic effects of a permanent reduction in Y_{*}.
- 3. Use the model to discuss one or more economic policies that can be invoked in order to stabilize the economy after the negative shock to Y_* .
- 4. Discuss, in a non-technical manner, whether the policy options after the shock to Y_* would have been more limited if the country was part of a monetary union.

Reference: Equations from Chapter 6.6 in OEM

Price specie-flow model

$$Y = C\left(Y - i_* \frac{EF_*}{P} - G, W_p, i, i_*\right) + G + X\left(\frac{EP_*}{P}, Y, Y_*\right)$$
(4)

$$W_p = -\frac{EF_*}{P} - W_g \tag{5}$$

$$\dot{P} = P\gamma(Y - \bar{Y}) \tag{6}$$

$$\dot{F}_* = i_* F_* - \frac{P}{E} X \left(\frac{EP_*}{P}, Y, Y_* \right) \tag{7}$$

Endogenous variables: Y, P, F_* and W_p

Initial conditions in the case of a fixed exchange rate regime: $P(0) = P_0$, $F_*(0) = F_{*0}$ and $W_g(0) = (-M_0 - B_0 + E(0)F_{g0})/P_0$.