Dynamics of Small Open Economies

Econ 4330 Open Economy Macroeconomics Spring 2008

Third lecture

Asbjørn Rødseth January 31 2008

Budget constraints with infinite horizons

Period budget constraint

$$C_s + I_s + (B_{s+1} - B_s) = Y_s + rB_s - G_s, \quad s = t, t+1, t+2, \dots$$
 (2)

- Start with s = t.
- Use (2) for s=t+1 to eliminate B_{t+1} . B_{t+2} then enters the equation.
- Use (2) for s=t+2 to eliminate B_{t+2} .
- Continue to eliminate B_{t+s} until s=T, and you get

$$\sum_{s=t}^{t+T} \left(\frac{1}{1+r}\right)^{s-t} (C_s + I_s) + \left(\frac{1}{1+r}\right)^T B_{t+T+1}$$

$$= +(1+r)B_t + \sum_{s=t}^{t+T} \left(\frac{1}{1+r}\right)^{s-t} (Y_s - G_s)$$
 (3)

Take the limit as $t \to \infty$ and you get

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} (C_s + I_s) = (1+r)B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} (Y_s - G_s)$$
 (4)

provided that all the limits exist and that

$$LIM = \lim_{T \to \infty} \left(\frac{1}{1+r} \right)^T B_{t+T+1} = 0$$
 (5)

Why is (5) a reasonable assumption?

Suppose *LIM < 0.* This means

- for large T, $B_{t+T+1} < 0$ and growing in absolute value at a rate greater than or equal to r.
- the country finances all interest payments by acquiring new debt.
- creditors will not accept that this goes on forever.
- LIM has to be greater than or equal to zero.

-
$$LIM = \lim_{T \to \infty} \left(\frac{1}{1+r}\right)^T B_{t+T+1} = 0$$
 (5)

Suppose *LIM > 0*. This means that

- - for large T, $B_{t+T+1} > 0$ and growing at a rate greater than or equal to r.
- the country is providing resources to others without getting anything in return.
- consumption can be increased without hitting.
- utility maximization demands *LIM* to be zero or negative.

Conclusion: LIM = 0.

Consistent with this:

- With an infinite horizon debt can be rolled over forever as long as some of the interest is paid from present income.
- To continue acquiring foreign assets forever can be consistent with utility maximization as long as some of the interest received is actually consumed.

A small economy model with infinite horizon

Utility function

$$U_t = u(C_t) + \beta u(C_{t+1}) + \beta^2 u(C_{t+2}) + \beta^3 u(C_{t+3}) + \dots = \sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$$
 (6)

Production functions:

$$Y_t = A_t F(K_t), t = 1, 2, ... (7)$$

Definitional relationships

$$K_t = K_{t-1} + I_{t-1}, t = 1, 2, (8)$$

$$CA_t = B_{t+1} - B_t = rB_t + Y_t - C_t - I_t - G_t, t = 1, 2, (9)$$

Budget constraint (4) or equivalently (5).

Optimization

Maximize

$$U_t = \sum_{s=t}^{\infty} \beta^{s-t} u(C_s) \quad (10)$$

with respect to B_{s+1} and K_{s+1} , s = t, t + 1, ...given

$$C_S = (1+r)B_S - B_{S+1} + A_S F(K_S) - (K_{S+1} - K_S) - G_S \qquad S = t, t+1, \dots (11)$$

and that LIM=0.

First order condition for B_{s+1} :

$$\frac{\partial U_t}{\partial B_{s+1}} = \beta^{s-t} u'(C_s) \frac{\partial C_s}{\partial B_{s+1}} + \beta^{s+1-t} u'(C_{s+1}) \frac{\partial C_{s+1}}{\partial B_{s+1}}$$
$$= \beta^{s-t} u'(C_s)(-1) + \beta^{s+1-t} u'(C_{s+1})(1+r) = 0$$

Hence, the consumption Euler equation

$$\beta(1+r)u'(C_{s+1}) = u'(C_s)$$
 (12)

First order condition for K_{s+1} :

$$\frac{\partial U_t}{\partial K_{s+1}} = \beta^{s-t} u'(C_s) \frac{\partial C_s}{\partial K_{s+1}} + \beta^{s+1-t} u'(C_{s+1}) \frac{\partial C_{s+1}}{\partial K_{s+1}}
= \beta^{s-t} u'(C_s) (-1) + \beta^{s+1-t} u'(C_{s+1}) (A_{s+1} F'(K_{s+1}) + 1) = 0$$

or

$$\beta u'(C_{s+1})(A_{s+1}F'(K_{s+1})+1)=u'(C_s)$$

Or after taking account of the Euler equation

$$A_{s+1}F'(K_{s+1}) + 1 = \frac{u'(C_s)}{\beta u'(C_{s+1})} = 1 + r$$

and surprise!

$$A_{s+1}F'(K_{s+1}) = r (13)$$

In addition to the first order conditions, we need the present value budget constraint to determine the levels of consumption and debt.

CES example again: Solving for C_t

The Euler equation reduces to

$$C_{S+1} = (1+r)^{\sigma} \beta^{\sigma} C_S = (1+v)C_S$$

where $v = (1+r)^{\sigma}\beta^{\sigma} - 1$ is the growth rate of consumption.

Hence,
$$C_s = (1 + v)^{s-t}C_t$$
,

and the present value of consumption is

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} C_s = \sum_{s=t}^{\infty} \left(\frac{1+v}{1+r}\right)^{s-t} C_t = \frac{1}{1-\frac{1+v}{1+r}} C_t = \frac{1+r}{r-v} C_t \quad (14)$$

(Use formula for sum of infinite geometric series).

r > v is necessary for convergence.

r > v is always satsified when both $\sigma < 1$ and $\beta < 1$.

Recall the present value budget constraint

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} C_s = (1+r)B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} (Y_s - I_s - G_s) = W_t \quad (4')$$

 W_t = total wealth

Replacing the lhs by,

$$\frac{1+r}{r-v}C_t$$

from (14), we find that

$$C_t = \frac{r - v}{1 + r} W_t \tag{15}$$

v=0 Consume the permanent income from your total wealth.

v>0 Consume less than your permanent income if you want a rising consumption path

Characterizing the solution for the current account

Define the "permanent" value of a variable

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \tilde{X}_t = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} X_s$$

Using the formula for the sum of an infinite geometric series:

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} = \frac{1}{1 - \frac{1}{1+r}} = \frac{1+r}{r}$$

Hence,

$$\frac{1+r}{r}\,\tilde{X}_t = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} X_s \quad \Leftrightarrow \quad \tilde{X}_t = \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} X_s$$

 W_t can then be rewritten

$$W_t = (1+r)B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} (Y_s - I_s - G_s) = (1+r)B_t + \frac{1+r}{r} (\tilde{Y}_t - \tilde{I}_t - \tilde{G}_t)$$

Hence, the solution for C_t can be rewritten

$$C_{t} = \frac{r - v}{1 + r} W_{t} = rB_{t} + \tilde{Y}_{t} - \tilde{I}_{t} - \tilde{G}_{t} - \frac{v}{1 + r} W_{t}$$
 (16)

By definition

$$CA_t = rB_t + Y_t - C_t - I_t - G_t$$
 (17)

After inserting for C_t from (16)

$$CA_t = Y_t - \tilde{Y}_t - (I_t - \tilde{I}_t) - (G_t - \tilde{G}_t) + \frac{v}{1 + r} W_t$$
 (8)

- Deviations between actual and permanent values of Y, I and G.
- Tilt factor related to growth rate.

A Stochastic Current Account Model

- Future levels of output, investment and government spending are stochastic
- Only financial asset is riskless bond which pays a constant interest rate r
- Rational expectations: Agent's expectations are equal to the mathematical conditional expectations based on the economic model and all available information about current and past value of economic variables
- Current values of all exogenous variables are known by all decision makers before decisions are made

Optimization

Utility function

$$U_t = \mathbf{E}_t \left\{ \sum_{s=t}^{\infty} \beta^{s-t} \ u(C_s) \right\}$$
 (19)

Same budget equation and constraints, same initial conditions, same procedure.

First order condition with respect to B_{s+1} (compare slide 6):

$$\mathbf{E}_{\mathsf{t}}[\beta^{s-t}u'(\mathcal{C}_s)(-1) + \beta^{s+1-t}u'(\mathcal{C}_{s+1})(1+r)] = 0$$

or

$$\mathbf{E}_{t}[u'(C_{s})] = \mathbf{E}_{t}[\beta(1+r)u'(C_{s+1})] \quad s = t, t+1, \dots \quad (20)$$

For *s*=*t* this specializes to

$$u'(C_t) = \mathbf{E}_t[\beta(1+r)u'(C_{t+1})] \tag{21}$$

First order condition with respect to K_{S+1} (compare slide 7):

$$\mathbf{E}_{\mathsf{t}}[\beta^{s-t}u'(\mathcal{C}_s)(-1) + \beta^{s+1-t}u'(\mathcal{C}_{s+1})(A_{s+1}F'(K_{s+1}) + 1)] = 0$$

For *s=t* this specializes to

$$\mathbf{E}_{\mathsf{t}}\{\beta u'(\mathcal{C}_{s+1})(A_{s+1}F'(K_{s+1})+1)\} = u'(\mathcal{C}_{s})$$

$$\mathbf{E}_{t} \left\{ \frac{\beta u'(C_{t+1})}{u'(C_{t})} A_{t+1} F'(K_{t+1}) \right\} + \mathbf{E}_{t} \left\{ \frac{\beta u'(C_{t+1})}{u'(C_{t})} \right\} = 1$$

Or, after inserting from the consumption Euler equation

$$\mathbf{E}_{t} \left\{ \frac{\beta(1+r)u'(C_{t+1})}{u'(C_{t})} A_{t+1} F'(K_{t+1}) \right\} = r \quad (22)$$

The linear-quadratic example

Exogenous endowments (Y_t) , no investment.

No trend growth in consumption: $\beta(1+r)=1$

Quadratic utility function

$$u(C) = C - \frac{a_0}{2}C^2, \quad a_0 > 0$$
 (23)

Euler equation $\mathbf{E}_{t}[u'(C_{s})] = \mathbf{E}_{t}[\beta(1+r)u'(C_{s+1})]$

$$\mathbf{E}_{t}[1 - a_{0}C_{s}] = \mathbf{E}_{t}[\beta(1+r)(1 - a_{0}C_{s+1})]$$

$$1 - a_0 \mathbf{E}_{\mathsf{t}} C_s = 1 - a_0 \mathbf{E}_{\mathsf{t}} C_{\mathsf{s+1}}$$

$$\mathbf{E}_{t}C_{s+1} = \mathbf{E}_{t}C_{s}$$
 $s = t, t + 1, (24)$

For *s*=1 we get Robert Hall's random walk result:

$$\mathbf{E}_{t}C_{t+1} = C_{t} \quad (25)$$

Taking expectations on both sides of the budget constraint, we find

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} \mathbf{E}_{t} C_{s} = (1+r)B_{t} + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} \mathbf{E}_{t} (Y_{s} - G_{s}) = W_{t}$$

Since $\mathbf{E}_t C_{s+1} = C_t$ for all s > t, the lhs is (compare (14))

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_{t} C_{s} = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} C_{t} = C_{t} \frac{1+r}{r}$$

Hence (compare (15))

$$C_t = \frac{r}{1+r}W_t = rB_t + \frac{r}{1+r}\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_t(Y_s - G_s)$$
 (26)

Certainty equivalence: Act as if the expected values were certain to be realized.

Constraints and first-order conditions are linear in all the stochastic variables.

Necessary: Quadratic utility function (dubious) and non-stochastic r.

Response-impulse relations for output shocks

 C_t is determined by $\mathbf{E}_t Y_s$, s=t+1,t+2,....How, are these expectations formed?

Example: Consumers believe income follows the stochastic process

$$Y_{s+1} - \overline{Y} = \rho(Y_s - \overline{Y}) + \varepsilon_{s+1} \qquad (27)$$

where $0 \le \rho \le 1$, $\mathbf{E}_{\mathsf{t}} \varepsilon_s = 0$ for $s = \mathsf{t} + 1$, $\mathsf{t} + 2$,..., and ε_t is serially uncorrelated.

 ρ is the coefficient of autocoregression.

 ρ measures the degree of persistence of the process

 $\rho = 0$ Y_s varies randomly around \overline{Y} . No serial correlation.

 $0 < \rho < 1$ Y_s returns gradually towards \overline{Y} after a shock. Positive serial corr.

 $\rho=1$ Y_{S} random walk, no tendency to return to \overline{Y} , $Y_{S+1}-Y_{S}=\varepsilon_{S+1}$

Impulse response functions for first-order AR process for different values of ρ

By successive insertions in (27) we find (details on slide 22)

$$Y_{s} - \overline{Y} = \rho^{s-t}(Y_{t} - \overline{Y}) + \sum_{i=t+1}^{s} \rho^{i-t} \varepsilon_{i}$$
 (28)

Take expectations on both sides of (28):

$$\mathbf{E}_{\mathsf{t}}[Y_{\mathsf{s}} - \bar{Y}] = \rho^{\mathsf{s}-\mathsf{t}}(Y_{\mathsf{t}} - \bar{Y}) \quad (29)$$

Insert the expectations from (29) in the consumption function (26) and you find (details on slide 23)

$$C_t = rB_t + \bar{Y} + \frac{r}{1 + r - \rho} (Y_t - \bar{Y})$$
 (30)

By definition $CA_t = rB_t + Y_t - C_t$. After inserting for C_t :

$$CA_t = \frac{1 - \rho}{1 + r - \rho} (Y_t - \bar{Y})$$
 (31)

CA does not depend on B_t .

Effect of Y_t on C_t . (MPC)

$$\frac{r}{1+r-\rho}$$

Effect of Y_t on CA_t

$$\frac{1-\rho}{1+r-\rho}$$

Derivation of (28)

Start from (27) with s=t:

$$Y_{t+1} - \overline{Y} = \rho(Y_t - \overline{Y}) + \varepsilon_{t+1}$$

Move forward 1 period:

$$Y_{t+2} - \overline{Y} = \rho(Y_{t+1} - \overline{Y}) + \varepsilon_{t+2}$$

Insert for $Y_{t+1} - \overline{Y}$:

$$Y_{t+2} - \overline{Y} = \rho^2 (Y_t - \overline{Y}) + \rho \varepsilon_{t+1} + \varepsilon_{t+2}$$

Move forward 1 period:

$$Y_{t+3} - \overline{Y} = \rho(Y_{t+2} - \overline{Y}) + \varepsilon_{t+3}$$

Insert:

$$Y_{t+3} - \overline{Y} = \rho^3 (Y_t - \overline{Y}) + \rho^2 \varepsilon_{t+1} + \rho \varepsilon_{t+2} + \varepsilon_{t+3}$$

Continue until *s* and you end up with (28).

Derivation of (30)

Start with the consumption function

$$C_t = rB_t + \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \mathbf{E}_t Y_s$$

Add and subtract \overline{Y} .

$$C_t = rB_t + \overline{Y} + \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \left(\mathbf{E}_t Y_s - \overline{Y}\right)$$

Insert for the expectations from (29)

$$C_t = rB_t + \bar{Y} + \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \rho^{s-t} (Y_t - \bar{Y})$$

Use the formula for the sum of an infinite geometric series

$$C_t = rB_t + \overline{Y} + \frac{r}{1 + r - \rho} (Y_t - \overline{Y})$$