Economics of Banking Regulation

Jin Cao (Norges Bank Research, Oslo & CESifo, Munich)

> November 3 & 10, 2014 Universitetet i Oslo

Outline

- Introduction
 - Why do we regulate banks?
 - Banking regulation in theory and practice
- Foundations of Banking Regulation
 - Unstable banking
 - Systemic risks
 - Indicators of systemic risks

Disclaimer

(If they care about what I say,) the views expressed in this manuscript are those of the author's and should not be attributed to Norges Bank.

Prelude

"Now it is true that banks are very unpopular at the moment, but this (banking regulation) seems very much like a case of robbing Peter to pay Paul." (The Economist, 20th July, 2011)

Why regulation?

Banking, as other industries, needs regulation on issues where free market cannot discipline itself, to

- Create and enforce rules of the game;
- Restrict *market power* and keep market competitive;
- Correct *externalities* or other *market failures* due to moral hazard and adverse selection;
- Protect the interests of taxpayers.

What make banking regulation special?

Banking regulation is special, comparing with others like telecommunications:

- Focuses more on "safety" and less on "price";
- Taxpayer protection, rather than consumer protection, is more important motivation and benchmark in regulatory design;
- The outcome is a crucial public good: financial stability;
- It prevents the spillover to the real economy through macro-finance linkages, such as "financial accelerator".

Banking crises since 1970

Cost of bank bailout since 1980

Country	Date	Cost as Percentage of GDP
	1980-2007	
Indonesia	1997-2001	57
Argentina	1980-1982	55
Thailand	1997-2000	44
Chile	1981-1985	43
Turkey	2000-2001	32
South Korea	1997-1998	31
Israel	1977	30
Ecuador	1998-2002	22
Mexico	1994-1996	19
China	1998	18
Malaysia	1997-1999	16
Philippines	1997-2001	13
Brazil	1994-1998	13
Finland	1991-1995	13
Argentina	2001-2003	10
Jordan	1989-1991	10
Hungary	1991-1995	10
Czech Republic	1996-2000	7
Sweden	1991-1995	4
United States	1988	4
Norway	1991-1993	3
	2007-2009	
Iceland	2007-2009	13
Ireland	2007-2009	8
Luxembourg	2007-2009	8
Netherlands	2007-2009	7
Belgium	2007-2009	5
United Kingdom	2007-2009	5
United States	2007-2009	4
Germany	2007-2009	1

Banking regulation: basic principles

- Banking regulation should be based on sound foundations
 - To address well articulated problems;
 - Using instruments working through well understood *mechanisms*;
- Banking regulation should target on *excessive* risk-taking while maintaining optimal *risk-sharing*;
- Regulatory policies should be *efficient*, or *incentive* compatible;
- Regulatory policies should be waterproof for regulatory arbitrage.

Financial crises and evolution of banking regulation

- Financial crisis is the most important driving force of banking regulation. The first greatest output was to create central banks worldwide;
- The second greatest output is to create global standards for banking regulation, namely, **Basel Accord** since 1988
 - Basel I (1988): on *credit risks* and *risk-weight* of assets;
 - Basel II (2004): more refinements, but failed miserably in the crisis
 - Internal Rating-Based (IRB) approach opportunities to arbitrage;
 - Generates more volatilities through *procyclical* rules;
 - Basel III (in progress).

Reconstructing banking regulation

- Banking regulation needs to address **systemic risk**,
 - The risk or probability of breakdowns in an *entire* system, as opposed to breakdowns in individual parts;
 - Evidenced by *comovements* (*correlation*) among most or all the parts;
- Banking regulation needs to be macroprudential instead of microprudential, mitigating systemic risks instead of idiosyncratic risks;
- Banking regulation needs to be countercyclical instead of procyclical
 - Building up buffers and cushions in the boom in order to
 - Absorb shocks and losses in the bust.

What's new in macroprudential regulation?

The macro- and microprudential perspectives compared

	*		
	Macroprudential	Microprudential	
Proximate objective	limit financial system-wide distress	limit distress of individual institutions	
Ultimate objective	avoid output (GDP) costs	consumer (investor/depositor) protection	
Model of risk	(in part) endogenous	exogenous	
Correlations and common exposures across institutions	important	irrelevant	
Calibration of prudential controls	in terms of system-wide distress; top-down	in terms of risks of individual institutions; bottom-up	

Why is banking so unstable?

- Instability arising from bank runs has been presented in Diamond & Dybvig (1983)
 - Maturity transformation: one of the most important features in banking;
 - However, runs there are easily eliminated by deposit insurance, while
 - In reality banking is generally unstable history shows that insurance did *not* make the system more stable;
- Why is banking still so unstable?
 - Moral hazard problem prevents full insurance;
 - Fragility may be *necessary* to descipline banks.

Fragility and instability: a model

A simple model based on Diamond & Rajan (2001) and Cao & Illing (2011)

- Consider an economy extending over 3 periods, t = 0, 1, 2, with the following risk-neutral agents:
 - **Depositors**: born with unit endowment at t = 0, deposit in banks; at t = 1 withdraw, consume and die;
 - Banks: Bertrand competion in deposit market → zero profit;
 - Entrepreneurs: borrow from banks, produce, and repay loans.
- No asymmetric information.

Technology

Two types of entrepreneurs, distinguished by the types of their projects:

- Safe projects: start at t = 0, return $R_1 > 1$ with certainty at t = 1;
- Risky projects: start at t = 0, return $R_2 > R_1$, however
 - With probability p, realize at t = 1, and $pR_2 < R_1$;
 - With probability 1 p, return postponed to t = 2.
- Banks would love to support only risky projects, while depositors prefer safe ones: **maturity mismatch**.

Incomplete contract and desire for fragility

- Entrepreneurs have expertise on operating projects ("inalienable human capital"), while bankers only get γR_i ($\gamma > p$) if they operate themselves
 - Entrepreneurs would walk away if the return demanded by bankers is too high: a *credible* threat;
 - In equilibrium bankers collect γR_i from projects' return;
- However, depositors do not have such collection skills
 - Bankers have the power to renegotiate with depositors at t = 1;
 - Depositors exercise bank run as *commitment device*, preventing renegotiation: desire for fragility.

Timing

At t=0

• Banks decide their investment plan: share α on safe projects and $1 - \alpha$ on risky projects, and offer deposit contracts promising the return $d_0 > 1$ to depositors;

Assets	Liabilities	
α on safe projects		
$1 - \alpha$ on risky projects	Deposits	

Timing (cont'd)

- At $t = \frac{1}{2}$
 - If depositors have doubt on bank's return, they can run on the bank all projects have to be liquidated, with poor return c < 1;
- At t = 1
 - Banks collect early returns, and depositors withdraw d_0 ;
 - Banks may borrow from early entrepreneurs (those with safe projects and risky projects that return early) using collateral;
- At t = 2
 - Banks collect returns from late projects and repay early entrepreneurs.

Timing (cont'd)

Timing of	the model	:	Early Projects	Late Projects
t =	: 0	t = 1/2	t = 1	t = 2
Investors	deposit;			
Bank	α	Type 1 projects →	R_1	
chooses	$1-\alpha$	Type 2 projects →	R_2	R_2

Debt roll-over and liquidity

- At t = 1 banks have
 - Collected return from early projects, $\gamma [\alpha R_1 + (1 \alpha) pR_2]$;
 - Loans to the postponed projects, $\gamma(1-\alpha)(1-p)R_2$;
- Early entrepreneurs have $(1 \gamma) [\alpha R_1 + (1 \alpha) pR_2]$;
- To maximize deposit repayment to depositors, banks may borrow from early entrepreneurs, using postponed projects as collateral.

Debt roll-over and liquidity (cont'd)

• Bank's balance sheet after t = 1

Assets	Liabilities	
Late risky projects	Debt to early entrepreneurs	

Maturity transformation and liquidity risk

• Bank's optimal strategy boils down to its choice on α , which leads to "just enough" collateral for debt roll-over

$$\alpha = \frac{\gamma - p}{\gamma - p + (1 - \gamma)\frac{R_1}{R_2}};$$

- Depositor's return $d_0 = \gamma \left[\alpha R_1 + (1 \alpha) R_2\right] = \alpha R_1 + (1 \alpha) \rho R_2 = E[R] > \gamma R_1;$
 - Maturity transformation is welfare improving;
 - However, if there is anything wrong in debt roll-over, banks are exposed to liquidity risk.

Maturity transformation and liquidity risk (cont'd)

- Bank's liquidity risk comes from two sources
 - Market liquidity: on the assets side, the liquid assets that can be converted to cash without much discount ("haircut") when necessary safe projects in this model;
 - Funding liquidity: on the *liabilities* side, the funding that a bank can raise without too high cost when it needs to roll over its debt debt to the entrepreneurs in this model;
- A bank's liquidity changes over time: a liquid balance sheet can easily becomes illiquid under market stress.

Liquidity risk under aggregate shock

- Now suppose there is uncertainty on p
 - p can take two values, $0 < p_L < p_H < \gamma$;
 - p is unknown at t = 0, and revealed at $t = \frac{1}{2}$. Probability of being p_H is π ;
- Consider two extreme cases

•
$$\pi \to 1$$
, $\alpha_H = \frac{\gamma - \rho_H}{\gamma - \rho_H + (1 - \gamma) \frac{R_1}{R_2}}$ and $d_0 = \alpha R_1 + (1 - \alpha) \rho_H R_2 = E[R_H];$
• $\pi \to 0$, $\alpha_L = \frac{\gamma - \rho_L}{\gamma - \rho_L + (1 - \gamma) \frac{R_1}{R_2}} > \alpha_H$ and $d_0 = \alpha R_1 + (1 - \alpha) \rho_L R_2 = E[R_L];$

• What happens in between?

Liquidity risk under aggregate shock (cont'd)

- Suppose π goes down from 1, following α_H
 - Depositor's return is $E[R_H]$ with probability π and c with $1-\pi$;
 - Bank sticks to α_H as long as $\pi E[R_H] + (1 \pi) c > E[R_L]$.

The root of evils

- Principal-agent problems and limited liability that
 encourage banks to take excessive risks, e.g., biased
 incentives from OPM (Other People's Money) instead of
 MOM (My Own Money);
- Externalities that lead to inferior allocation of resources and risks
 - Positive externalities taking the full cost while generating benefit to others reduce necessary buffers in banking system, e.g., liquid assets holdings;
 - Negative externalities taking the full benefit while cost partially borned by others – lead to excess risk-taking, e.g., interbank borrowing.

Example: systemic liquidity shortages

- Banks need to hold some liquid assets assets that can be easily converted to cash – in order to cushion demand shocks from depositors
 - There's opportunity cost in holding liquid assets, while
 - It benefits stressed banks through interbank lending;
- Positive externality \rightarrow systemic liquidity shortage among banks.

Example: systemic liquidity shortages (cont'd)

• Liquid assets as share of banks' balance sheets: US & UK

Example: network externality

Example: network externality (cont'd)

- Interbank lending makes the banks a "web of claims", or banking network;
- One bank's failure leads to losses of connecting banks';
 bank failure may further spread over the network contagion or "domino effect";
- In good time banks make profit with borrowed money from other banks, while in bad time the connecting banks suffer from losses, too – negative externality;
- Too much reliance on interbank lending "too-interconnected-to-fail".

Indicators of systemic risks

The devil in the details.

- Financial history suggests the following *lead indicators* for systemic events:
 - "Capital Flow Bonanzas";
 - Waves of financial innovation;
 - Housing boom;
 - Financial liberalization;
 - After all, credit growth seems single best indicator for financial instability;
- Regulators need watch the indicators, while design rules to target sources of systemic risks.