Problem set 4 (September 24, 2015)

Problem 1

Consider the market for liquidity described in Diamond and Rajan (2011). In particular, let's assume that P_1 is exogenous, and a fraction β of each bank's assets is composed of financial securities that can be sold in period 0 or in period 1. The rest of the assets are loans that can be recalled at date 1. Both the security and the loans have face value Z in period 2. The liquidation value of the loans, denoted l, is distributed uniformly between 0 and Z. The value of deposits is D, a shock hits in period 1 with probability q, and in case of shock depositors withdraw an amount fD of deposits in period 1. Assume that P_1 is sufficiently large that the bank expects to be solvent in period 1 even if it does not sell any security in period 0.

- 1) What condition should P_0 and P_1 satisfy to ensure that buyers are indifferent to buy securities in either period 0 or period 1?
- 2) Let's say that the bank plans to sell a fraction η_1 of its security at date 1 (if the shock hits), and not sell any security in period 0. What fraction of the loans will be liquidated in case of shock? What is the average l of the liquidated loans? Can you find an expression for η_1 ?
- 3) Let's say that the bank plans to sell a fraction η_0 of its security at date 0 AND NOT SELL ANY SECURITY IN PERIOD 1. Moreover, assume that P_0 and P_1 are such that the bank is indifferent to sell its security in period 0 and in period 1. What fraction of the loans will be liquidated in case of shock? What is the average l of the liquidated loans? Can you find an expression for η_0 ?
- 4) Is is true that for P_1 and P_0 that satisfy the condition you found in question (1) the bank is indifferent between selling assets in period 0 and period 1?

Problem 2

Consider a market in which there are N banks and N buyers of securities. Each banks owns a security that ensures a return R in the next period. Half of the securities ensure a return R = 1, and half ensure a return R = 0. If a bank does not sell the security, the security is worth $\frac{1}{2}R$ to the bank in the next period, while buyers get a utility from a security equal to its return. The time discount factor is normalized to 1. Banks know the return of their own security, while buyers only know the distribution of returns.

- 1) Is there a price for which all securities are sold?
- 2) Is there a price for which securities are sold only if R = 0?
- 3) Assume now that the security is worth $k \in (0,1)$ to the bank. For which values of k there exists a price for which all securities are sold?