Part 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Firms (borrowers), banks, households (depositors)
- Everyone is risk-neutral
- Each firm can only borrow from one bank (not important?)
- Each household lends to only one bank (not mentioned)
- Open sector

Firms

- Firms pay labor in one period, sell output in the next
- Borrow to finance the wage bill
- Limited liability

Production function

$$y = N^{\beta}(1+\varepsilon) \qquad 0 < \beta < 1 \tag{1}$$

 $arepsilon = {
m aggregate} \ {
m productivity} \ {
m shock}, \ {
m Pr}(arepsilon = 0) = heta, \ {
m Pr}(arepsilon = -1) = 1 - heta$

- Everything is lost in bad state
- If one firm fails, all fail

Firms,

Expected profits (P=price, P_N = wage rate):

$$\Pi^{e} = \theta P \left[N^{\beta} - (1 + r_{L}) P_{N} N \right]$$
(2)

Optimal employment, from 1.o.cond .:

$$N = \left[\frac{P\beta}{(1+r_L)P_N}\right]^{1/(1-\beta)}$$
(3)

Borrowing from bank (L = wage bill):

$$L = P_N N \tag{4}$$

Borrowing depends negatively on r_L Risk of failure independent of r_L Initial balance sheet

$$w = A \tag{5}$$

w = net assets, D = deposits, A = Other assets Balance sheet after lending to firm

$$w = A + (L - D), \quad D = L$$

Gross return on A is 1 + u, with u uniformly distributed over $[\underline{u}, \overline{u}]$, $-1 < \underline{u} < 0$ Density $g(u) = \frac{1}{\overline{u} - \underline{u}}$ If firms fail, bank is able to repay depositors only if $u > u^*$ defined by

$$w(1+u_*) = L(1+r_d) \Longleftrightarrow u^* = \frac{L}{w}(1+r_d) - 1 \tag{6}$$

The probability that a bank fails given that borrowers fail is

$$Pr(u < u^*) = \frac{u^* - \underline{u}}{\overline{u} - \underline{u}}$$
(7)

The unconditional probability of bank default is then

$$\Pi = (1 - \theta) \frac{u^* - \underline{u}}{\overline{u} - \underline{u}} \tag{8}$$

Expected value of failed bank's assets

$$\psi^{e} = w \int_{\underline{u}}^{u^{*}} (1+u) \frac{1}{u^{*}-\underline{u}} du = w \left[1 + \frac{1}{2} (u^{*} + \underline{u}) \right]$$
(9)

If we insert for u_* we get

$$\psi^e = \frac{1}{2} \left[L(1+r_d) + w(1+\underline{u}) \right]$$

Households

Investment alternatives:

Government bond, risk free $1 + r_f$ Bank deposit $1 + r_d$ if bank can pay Risk neutral households require equal expected returns

$$1+r_f=(1-\Pi)(1+r_d)+\Pi\left(\frac{1}{D}\psi^e-c\right)$$

Alternative expression

$$1 + r_f = (1 - \Pi)(1 + r_d) + \Pi \frac{w}{L} \left[1 + \frac{1}{2}(u^* + \underline{u}) - c \right]$$

Insert $u^* = \frac{L}{w}(1+r_d) - 1$ and solve for $1 + r_d$:

$$1 + r_d = 1 + r_f + \frac{\Pi}{2 - \Pi} \left[1 + r_f - \frac{w}{L} (1 + \underline{u}) \right]$$

• Margin increasing in r_f and L, decreasing in w

Competition means the expected values of what banks receive and pay at the end of period must be equal From firms they receive $(1 + r_L)L$ with probability θ To depositors they pay $(1 + r_d)L$ with probability $1 - \Pi$ w(1 + u) with probability Π Equality in expectations means

$$\theta(1+r_L)L = (1-\Pi)(1+r_d)L + \Pi \psi^e$$

$$(1+r_L) = (1+r_d) + \frac{1}{2} \Pi \left[\frac{w}{L} (1+\underline{u}) - (1+r_d) \right]$$

Ourcome	No default	Firm defaults	Bank defaults	Alt. cost
Probability	θ	$1- heta-\Pi$	П	
Bank	$(r_L - r_D)L$	$-(1-r_D)L$	$-\psi^e$	0
Household	$(1+r_D)L$	$(1+r_D)L$	$\psi^e - cL$	$(1 + r_f)L$
Sum	$(1+r_L)L$	0	-cL	$(1 + r_f)L$
		Table:		

Since both are risk-neutral

$$\theta(1+r_L)L-\Pi cL=(1+r_f)L$$

Solution for loan rate is

$$1+r_L=\frac{1}{\theta}(1+r_f)+\frac{\Pi}{\theta}c$$

Deposits over safe asset:

$$r_D - r_f = \frac{\Pi}{1 - \Pi} \left[(1 + r_f) - (\psi^e / L) + c \right]$$
$$r_L - r_f = \frac{1 - \theta}{\theta} (1 + r_f) + \frac{\Pi}{\theta} c$$

$$1 + r_L = \frac{1}{\theta} (1 + r_f) + \frac{\prod c}{\theta}$$
$$\prod = (1 - \theta) \frac{u^* - \underline{u}}{\overline{u} - \underline{u}}$$
$$u^* = \frac{L}{w} (1 + r_D)$$

Πis increasing in u^* , which is increasing in *L*. Problem r_D also depends on *L*

Bianchi model

Bianchi (2011) AER: Overborrowing and systemic externalities in the business cycle

- Sudden stops:
 - Capital inflow suddenly turns around
 - Current account deficit turns to surplus
 - Boom turns to deep recession
 - Example: Asian crisis 1997-98, Greece, Portugal, Spain
- RBC-model
 - Technology shocks
 - Consumption smoothing
 - CA surplus in booms, deficits in recession

Bianchi's explanation

- Incomplete markets, only safe bond, no insurance
- Moral hazard, difficulty collecting debt payments
- Lenders limit borrowing relative to income
- Consumers sometimes borrow up to the limit
- If a bad shock hits, the limit is reduced and consumers forced to save
- \bullet Increased saving reduces the price of non-traded goods ${\rightarrow}\mathsf{Even}$ lower limit
- Overborrowing: One person's borrowing contribute to reduce the limit for all

Consumers maximize

$$\mathbb{E}_0\left\{\sum_{0}^{\infty}\beta^t u(c_t)\right\}$$
(10)

where

 $0 < \beta < 1$ $u'(c_t) > 0, u''(c_t) < 0, u'''(c_t) > 0$ $c_t = w(c_t^T, c_t^N)$, where v is homogeneous of degree 1 Impatience, risk aversion precaution

Budget

$$b_{t+1} + c_t^T + p_t^N c_t^N = b_t (1+r) + y_t^T + p_t^N y_t^N$$
(11)

Borrowing

$$b_{t+1} \ge -\kappa \left(y_t^{\mathsf{T}} + p_t^{\mathsf{N}} y_t^{\mathsf{N}} \right) \tag{12}$$

eta(1+r) < 1 Assumption: Impatience beats real interest rate Debt limited relative to income

$$\begin{aligned} &\ln y_t^{T} &= \rho_{11} \ln y_{t-1}^{T} + \rho_{12} \ln y_{t-1}^{N} + \varepsilon_t^{T} \\ &\ln y_t^{N} &= \rho_{21} \ln y_{t-1}^{T} + \rho_{22} \ln y_{t-1}^{N} + \varepsilon_t^{N} \end{aligned}$$

Calibration: $ho_{11}=$ 0.9, $ho_{22}=$ 0.2, time unit one year

Optimality conditions

Intertemporal condition

Either
$$b_{t+1} > -\kappa \left(y_t^T + p_t^N y_t^N \right)$$
 and $\frac{\partial u}{\partial c_t^T} = \beta (1+r) \mathbb{E}_t \frac{\partial u}{\partial c_{t+1}^T}$
(13)

or
$$b_{t+1} = -\kappa \left(y_t^T + \kappa^N \rho_t^N y_t^N \right)$$
 and $\frac{\partial \mathbf{u}}{\partial \mathbf{c}_t^T} \ge \beta (1+r) \mathbb{E}_t \frac{\partial \mathbf{u}}{\partial \mathbf{c}_{t+1}^T}$
(14)

Intratemporal condition

$$\frac{w_2'(c_t^T, c_t^N)}{w_1'(c_t^T, c_t^N)} = p_t^N$$

Budget constraint

$$b_{t+1} + c_t^T + p_t^N c_t^N = b_t (1+r) + y_t^T + p_t^N y_t^N$$

The intratemporal condition

$$\frac{w_2'(c_t^T, c_t^N)}{w_1'(c_t^T, c_t^N)} = p_t^N$$

Because of homogeneity:

$$\frac{w_2'(c_t^T, c_t^N)}{w_1'(c_t^T, c_t^N)} = \frac{w_2'(1, c_t^N/c_t^T)}{w_1'(1, c_t^N/c_t^T)} = p_t^N$$

With constant elasticity of substitution, $1/(\eta + 1) > 0$:

$$\left(\frac{c_t^T}{c_t^N}\right)^{(1+\eta)} = p_t^N \iff c_t^N = c_t^T \left(p_t^N\right)^{-1/(1+\eta)}$$
(15)

Condition

$$c_t^N = y_t^N \tag{16}$$

Hence:

$$p_t^N = \left(\frac{c_t^T}{y_t^N}\right)^{(1+\eta)}$$
$$b_{t+1} \ge -\kappa \left(y_t^T + p_t^N y_t^N\right) = -\kappa \left[y_t^T + \left(y_t^N\right)^\eta \left(c_t^T\right)^{1+\eta}\right]$$

 $(-\pi) (1+n)$

• More consumption raises borrowing limit of everybody

- Impatience eta < 1: Consume early, acquire debt up to limit
- Risk aversion u'' < 0: Smooth consumption, save in good times, use in bad times
- Precaution u''' > 0: Better to save too much than too little, save early. if bad luck, rebuild.
- Credit constraint
 - Prevents full consumption smoothing
 - Activates precautionary saving with infinite horizon
- Graphs will be shown

- Tax debt to internalize externality, even if it is a pecuniary externality
- Optimal tax structure complicated

- Model can produce sudden stops
- What was the technology shock that hit Thailand? in 1997?
- How come that so many other Asian countries were hit?
- Simpler explanation: It started with a loss of confidence in the fixed parities to dollar.
- Domestic investors had borrowed in dollars financing investment boom in non-traded industries
- Foreign investors had lent in bath.
- Panic resulted when parity questioned
- Policy conclusion: Capital controls to limit inflows of hot money

- No bank in model, no defaults
- Too much debt is bad! or
- Living too close to borrrowing constraint = Danger!
- Main lesson: Amplifying of negative shocks