
ECON4510 Finance theory Diderik Lund, 6 October 2009

Markets for state-contingent claims

(Markeder for tilstandsbetingede krav)

• Theoretically useful framework for markets under uncertainty.

• Used both in simplified versions and in general version, known

as complete markets (komplette markeder) (definition later).

• Extension of standard general equilibrium and welfare theory.

• Developed by Kenneth Arrow and Gerard Debreu during 1950’s.

• First and second welfare theorem hold under some assumptions.

• Not very realistic.

Description of one-period uncertainty:

• A number of different states (tilstander) may occur, numbered

θ = 1, . . . , N .

• Here: N is a finite number.

• Exactly one of these will be realized.

• All stochastic variables depend on this state only: As soon

as the state has become known, the outcome of all stochastic

variables are also known. Any stochastic variable X̃ can then

be written as X(θ).

• “Knowing probability distributions” means knowing probabil-

ities of each state and the outcomes of stochastic variables in

each.

• When N is finite, prob. distn.s cannot be continuous.
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Securities with known state-contingent outcomes

• Consider M securities (verdipapirer) numbered j = 1, . . . , M .

• May think of as shares of stock (aksjer).

• Value of one unit of security j will be pjθ if state θ occurs.

These values are known.

• Buying numbers Xj of security j today, for j = 1, . . . , M , will

give total outcomes in the N states as follows:




p11 · · · pM1
... ...

p1N · · · pMN



·




X1
...

XM




=




∑
pj1Xj

...
∑

pjNXj




• If prices today (period zero) are p10, . . . , pn0, this portfolio costs

[p10 · · · pM0] ·




X1
...

XM




=
∑

pj0Xj

• Observe that the vector of X ’s here is not a vector of portfolio

weights. Instead each Xj is the number of shares (etc.) which

is bought of each security. (For a bank deposit this would be

an unusual way of counting how much is invested, but think of

each krone or Euro as one share.)
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Constructing a chosen state-contingent vector

If we wish some specific vector of values (in the N states), can any

such vector be obtained?

Suppose we wish 


Y1
...

YN




Can be obtained if there exist N securities with linearly inde-

pendent (lineært uavhengige) price vectors, i.e. vectors




p11
...

p1N



, · · · ,




pN1
...

pNN



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Complete markets

Suppose N such securities exist, numbered j = 1, . . . , N , where

N ≤ M . A portfolio of these may obtain the right values:




p11 · · · pN1
... ...

p1N · · · pNN



·




X1
...

XN




=




Y1
...

YN




since we may solve this equation for the portfolio composition



X1
...

XN




=




p11 · · · pN1
... ...

p1N · · · pNN




−1

·




Y1
...

YN




If there are not as many as N “linearly independent securities,” the

system cannot be solved in general.

If N linearly independent securities exist, the securities market is

called complete.

The solution is likely to have some negative Xj’s. Thus short selling

must be allowed.
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Remarks on complete markets

• To get any realism in description: N must be very large.

• But then, to obtain complete markets, the number of different

securities, M , must also be very large.

• Three objections to realism:

– Knowledge of all state-contingent outcomes.

– Large number of different securities needed.

– Security price vectors linearly dependent.
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Arrow-Debreu securities

• Securities with the value of one money unit in one state,

but zero in all other states.

• Also called elementary state-contingent claims, (elementære

tilstandsbetingede krav), or pure securities.

• Possibly: There exist N different A-D securities.

• If exist: Linearly independent. Thus complete markets.

• If not exist, but markets are complete: May construct A-D

securities from existing securities. For any specific state θ, solve:




X1
...

XN




=




p11 · · · pN1
... ...

p1N · · · pNN




−1

·




0
...

0

1

0
...

0




with the 1 appearing as element number θ in the column vector on

the right-hand side.
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State prices

The state price for state number θ is the amount you must pay

today to obtain one money unit if state θ occurs, but zero otherwise.

Solve for state prices:

qθ = [p10 · · · pN0]




p11 · · · pN1
... ...

p1N · · · pNN




−1

·




0
...

0

1

0
...

0




State prices are today’s prices of A-D securities, if those exist.

Risk-free interest rate

To get one money unit available in all possible states, need to buy

one of each A-D security. Like risk-free bond. Risk-free interest

rate rf is defined by
1

1 + rf
=

N∑

θ=1
qθ.
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Pricing and decision making in complete markets

All you need is the state prices. If an asset has state-contingent

values 


Y1
...

YN




then its price today is simply

[q1 · · · qN ] ·




Y1
...

YN




=
N∑

θ=1
qθYθ.

• Can show this must be true for all traded securities.

• For small potential projects: Also (approximately) true. Ex-

ception for large projects which change (all) equilibrium prices.

• Typical investment project: Investment outlay today, uncertain

future value. Accept project if outlay less than valuation (by

means of state prices) of uncertain future value.
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Absence-of-arbitrage proof for pricing rule

If some asset with future value vector



Y1
...

YN




is traded for a different price than

[q1 · · · qN ] ·




Y1
...

YN



,

then one can construct a riskless arbitrage, defined as

A set of transactions which gives us a net gain now,

and with certainty no net outflow at any future date.

A riskless arbitrage cannot exist in equilibrium when people have

the same beliefs, since if it did, everyone would demand it. (Infinite

demand for some securities, infinite supply of others, not equilib-

rium.)
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Proof contd., exploiting the arbitrage

Assume that a claim to 


Y1
...

YN




is traded for a price

pY < [q1 · · · qN ] ·




Y1
...

YN



.

“Buy the cheaper, sell the more expensive!”

Here: Pay pY to get claim to Y vector, shortsell A-D securities in

amounts {Y1, . . . , YN}, cash in a net amount now, equal to

[q1 · · · qN ] ·




Y1
...

YN



− pY > 0.

Whichever state occurs: The Yθ from the claim you bought is ex-

actly enough to pay off the short sale of a number Yθ of A-D se-

curities for that state. Thus no net outflow (or inflow) in period

one.

Similar proof when opposite inequality. In both cases: Need short

sales.
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Separation principle for complete markets

• As long as firm is small enough — its decisions do not affect

market prices — all its owners will agree on how to decide on

investment opportunities: Use state prices.

• Everyone agrees, irrespective of preferences and wealth.

• Also irrespective of probability beliefs — may believe in differ-

ent probabilities for the states to occur.

• Exception: All must believe that the same N states have strictly

positive probabilities. (Why?)
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Individual utility maximization with complete markets

Assume for simplicity that A-D securities exist. Consider individual

who wants consumption today, c0, and in each state next period,

cθ. Budget constraint:

W0 =
∑

θ
qθcθ + c0.

Let πθ ≡ Pr(state θ). Assume separable utility function

u(c0) + E[U(cθ)].

We assume that U ′ > 0, U ′′ < 0 and similarly for the u function.

(Possibly u() 6= U(), maybe only because of time preference. Most

typical specification is that U() ≡ 1
1+δu() for some time discount

rate δ.)

max


u(c0) +

∑

θ
πθU(cθ)


 s.t. W0 =

∑

θ
qθcθ + c0

has f.o.c.
πθU

′(cθ)

u′(c0)
= qθ for all θ

(and the budget constraint).
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Remarks on first-order conditions

πθU
′(cθ)

u′(c0)
= qθ for all θ.

Taking q1, . . . , qN as exogenous: For any given c0, consider how

to distribute budget across states. Higher πθ ⇒ lower U ′(cθ) ⇒
higher cθ. Higher probability attracts higher consumption.

Consider now whole securities market. For simplicity consider a

pure exchange economy with no productions, so that the total con-

sumption in each future state

c̄θ =
∑

individuals
cθ

is given. Assume also everyone believes in same π1, . . . , πN . If

some πθ increases, everyone wants own cθ to increase. Impossible.

Equilibrium restored through higher qθ.

Assume now c̄θ increases. Generally people’s U ′(cθ) will decrease.

Equilibrium restored through decreasing qθ. Less scarcity in state

θ leads to lower price of consumption in that state.

It is clear that we need an equilibrium model in order to under-

stand how the equilibrium prices depend on exogenous variables

(like endowments and preference parameters). There is an example

in exercise no. 1 for seminar no. 4.
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State contingent claims: Equilibrium and Pareto Op-

timum

(Danthine & Donaldson, sections 8.3–8.4)

Simplify as before: Two periods, t = 0, 1; N different states of the

world may occur at t = 1; only one consumption good.

Each consumer, k, derives utility at t = 0 from two sources:

• Consumption at t = 0, ck
0.

• Claims to consumption at t = 1 in the different states which

may occur; this is an N−vector, (ck
θ1
, ck

θ2
, . . . , ck

θN
).

Welfare theorems hold in this setup:

• Each time-and-state specified consumption good must be seen

as a separate type of good.

• Then the two welfare theorems work just as in a static model

without uncertainty.

• Pareto Optimum: Equalities of marginal rates of substitution

(MRS).

• Market solution: Consumers equalize MRS’s to price ratios,

and achieve P.O.

• First welfare theorem: Competitive market solution is Pareto

Optimal.

• Second welfare theorem: Any Pareto Optimum can be obtained

as a competitive market solution by distributing the initial en-

dowments suitably amongst the consumers.

Will look at an example to strengthen the intuitive understanding.
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Example: Two potato-growers

• Two farmers (k=1,2), both growing potatoes, but different

fields.

• Derive utility from consumption of potatoes at t = 1 only.

• N = 2, state 1 called M (mild weather), state 2 F (frost);

Pr(M) = π.

• Farmer 1: Utility E[U1(C̃1)], output 10 in M, 2 in F.

• Farmer 2: Utility E[U2(C̃2)], output 6 in M, 4 in F.

• Will discuss what is a Pareto Optimum, first-order conditions.

• Specified utility function, E[−e−bkC̃k ]. (What is bk?)

• With this utility function, discuss

– Which allocations are Pareto Optimal? (a) for b1 = b2, and

(b) for b1 = 4b2.

– Show that optimum means no trade if b2 = 4b1.

– What direction is the trade if b2 < 4b1, and vice versa?

Interpretation?

– If b2 is fixed, what happens with the optimum if b1 → 0?
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Indifference curves for farmer 1.
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Pareto Optimum in the two-farmer example

Consider first what the problem looks like without specifying the

utility function. P.O. is achieved by maximizing expected utility of

one farmer for each level of expected utility of the other, given the

resource constraint.

max
C1

M ,C1
F

πU1(C
1
M) + (1− π)U1(C

1
F )

subject to

πU2(C
2
M) + (1− π)U2(C

2
F ) = Ū2,

and

C1
M + C2

M = 16,

and

C1
F + C2

F = 6.

The two resource constraints say that the total amount used in

state M is 16, the sum of outputs in that state, and similarly for

state F. There is no consideration here of original ownership of these

outputs, or of budget constraints that should be satisfied. Pareto

Optimum could come about by the action of a planner who starts

by confiscating the ownership of claims to the outputs, then hands

these out to the two farmers. The first-order conditions for how to

hand out will show that this can be done in a variety of ways, along

a contract curve in the Edgeworth box.
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Pareto Optimum in the two-farmer example, contd.

The Lagrangian for the maximization problem is

L(C1
M , C1

F , C2
M , C2

F ) = πU1(C
1
M) + (1− π)U1(C

1
F )

+µ[πU2(C
2
M)+(1−π)U2(C

2
F )−Ū2]+ν(C1

M+C2
M−16)+ξ(C1

F+C2
F−6).

You can work out the first-order conditions for yourself. They imply

πU ′
1(C

1
M)

(1− π)U ′
1(C

1
F )

=
πU ′

2(C
2
M)

(1− π)U ′
2(C

2
F )

.

The probabilities cancel due to the fact that the two farmers have

the same beliefs.
U ′

1(C
1
M)

U ′
1(C

1
F )

=
U ′

2(C
2
M)

U ′
2(C

2
F )

.

We introduce the resource constraints.

U ′
1(C

1
M)

U ′
1(C

1
F )

=
U ′

2(16− C1
M)

U ′
2(6− C1

F )
.

The general idea is illustrated in the Edgeworth box on the next

page, although that box has the total output equal to 6 for both

states. All points of tangency between the indifference curves of the

two farmers are Pareto Optima. The collection of these points is

sometimes called the contract curve. If the planner wants a Pareto

Optimum, there are many to choose from.
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Edgeworth box when the two are equally risk averse. The length of

the horizontal side is equal to the total endowment (across farmers)

in state M , here set equal to 6. The length of the vertical side

is similar for state F , here also set to 6. Each point in the box

describes one particular distribution of the total output between

the two farmers, simultaneously for state M and state F . In this

particular case the contract curve is the diagonal.

19



ECON4510 Finance theory Diderik Lund, 6 October 2009

Pareto Optimum in the two-farmer example, contd.

Introduce now E[Uk(C̃k)] ≡ E[−e−bkC̃k ], with bk > 0 a constant.

When the U function is specified like this, we can find a formula for

the contract curve and plot it in the Edgeworth box. The first-order

condition, equality between MRS’s (from p. 18), is now

b1e
−b1C

1
M

b1e
−b1C

1
F

=
b2e

−b2C
2
M

b2e
−b2C

2
F

=
b2e

−b2(16−C1
M )

b2e
−b2(6−C1

F )
.

This can be solved for

−b1(C
1
M − C1

F ) = −b2(16− C1
M − 6 + C1

F ),

which gives

C1
F = C1

M − 10

1 + b1
b2

.

This is a straight line with slope 45 degrees.
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If we let b1 = b2, we find the contract curve

C1
F = C1

M − 10

1 + b1
b2

= C1
M − 5.

If we let b1 = 1
4b2, we find

C1
F = C1

M − 8,

which is a line through the original allocation, (C1
M , C1

F ) = (10, 2).

Thus, for this relationship between the two farmers’ aversions to

risk, the original allocation was already Pareto Optimal. With this

as a starting point, if b1 is increased while b2 is held fixed, the

contract curve moves to the left. Farmer 1 is suffering too much

from the highly skewed distribution, C1
M > C1

F . On the other

hand, if b1 → 0, the contract curve approaces C1
F = C1

M − 10,

which means that farmer 2 avoids all risk.
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