
ECON4510 Finance theory Diderik Lund, 17 November 2009

The Black-Scholes-Merton formula (Hull 13.5–13.8)

• Assume St is a geometric Brownian motion w/drift.

• Want market value at t = 0 of call option.

• European call option with expiration at time T .

• Payout at T is max(ST −K, 0).

• Assume stock does not pay dividends.

• Three alternative methods lead to same result:

1. Take limit of binomial model as n→∞, h→ 0.

2. Replicating portfolio strategy directly in continuous time.

3. Find “risk-neutral” expectation of max(ST −K, 0).

• Hull (top of p. 292) starts on 2., see exercise 13.17, p. 304.

• Instead does 3. on pp. 307–309.

• Hull p. 256 has reference to article using 1.:

• Cox, Ross, and Rubinstein (1979).

• Today: Will follow Hull; first 2., then 3.

• Result is Black-Scholes-Merton formula,

c(S0, K, T, r, σ) ≡ S0N(d1)−Ke−rTN(d2),

where N is the standard normal distribution function,

d1 ≡
ln(S0/K) + (r + σ2/2)T

σ
√
T

, and d2 ≡ d1 − σ
√
T .
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Portfolio strategies; replicating vs. risk free

• In binomial model, showed a replicating pf. strategy.

◦ Holding ∆ shares and B in bonds equals option.

• Hull instead combines share and option to get risk free pf.:

◦ Holding ∆ shares minus option equals −B bonds.

• In many periods: Need to readjust . . .

◦ readjust replicating portfolio to replicate option, or

◦ readjust risk free portfolio to stay risk free.

• In continuous time: Need to readjust continuously.

• Relies on literal interpretation of “no transaction costs.”

• Will show how to determine risk free pf. strategy.

• This pf. strategy must earn risk free interest rate.

• If not: Exists riskless arbitrage opportunity.
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Risk free portfolio strategy; share and option

(Hull, pp. 287–288)

• St is a geometric Brownian motion with drift, an Itô process,

dS = µS dt + σS dz.

• Before T : Call option value is function of St (or S for short).

• Also function of t (or T − t, time until expiration).

• What follows is not limited to a call option, c(S, t).

• Valid for any derivative of S, use notation f (S, t).

• Use Itô’s lemma for f (S, t),

df =

∂f
∂S

µS +
∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

 dt +
∂f

∂S
σS dz.

• For short intervals ∆t:

∆S = µS ∆t + σS ∆z.

and

∆f =

∂f
∂S

µS +
∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

∆t +
∂f

∂S
σS ∆z.

• Compose portfolio with ∂f/∂S shares and -1 derivative.

• Value of portfolio is Π = −f + ∂f
∂SS.

• Change in value over short ∆t is

∆Π = −∆f +
∂f

∂S
∆S =

−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2

∆t.

• This is risk free since there is no ∆z.
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Differential equation follows from no arbitrage

• The no-arbitrage condition requires ∆Π = rΠ ∆t.

• This implies

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2∂

2f

∂S2
= rf.

• This is a partial differential equation (PDE) in f (S, t).

• It has many solutions.

• Only natural, since we have not specified a call option.

• Equation equally valid for put option and other derivatives.

• To obtain a particular derivative, need boundary condition:

• Boundary condition for call option is f = max(S−K, 0) when

t = T .

• Black-Scholes-Merton solves PDE and boundary condition.

• Hull leaves this to the reader, exercise 13.17, p. 304.

• Technical note: Compare B-S-M formula p. 291 and p. 304.

◦ The T on p. 291 is replaced by T − t on p. 304.

◦ For a particular option, T is fixed; T − t varies over time.

◦ Asking how c varies with time means as T − t goes to zero.

◦ t increases until it reaches T .

◦ t is the time variable relevant for the partial diff. equation.

◦ This explains the need for T − t in exercise 13.17.
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Option pricing using “risk-neutral” method

• Based on Ŝt, an adjusted process for St.

• Same starting point point, Ŝ0 = S0.

• Same volatility, σ.

• But an expected price increase as if investors were risk neutral.

• E(ŜT ) = S0e
rT instead of E(ST ) = S0e

µT .

• (E(ŜT ) is what Hull calls Ê(ST ).)

• (Also D& D, cf. lecture notes 18 August, p. 6.)

• Market value at time zero is e−rTE[max(0, ŜT −K)].

• May split the payoff in two parts:

◦ Paying K in case ST > K.

◦ Receiving ST in case ST > K.

• Need expectations for each part.

• Instead of ST , use ŜT , with probability density f (ŜT ):

E(K|ŜT > K) =
∫ ∞
K
Kf (ŜT )dŜT = K

∫ ∞
K
f (ŜT )dŜT ,

which is equal to K Pr(ŜT > K); the other part is

E(ŜT |ŜT > K) =
∫ ∞
K
ŜTf (ŜT )dŜT .

• The first is simpler, since K is a constant.
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Valuation of obligation to pay K if ST > K

Pr(ŜT > K) = Pr(ln ŜT − lnS0 > lnK − lnS0),

where ln ŜT − lnS0 ∼ φ((r−σ2/2)T, σ2T ), so that Pr(ŜT > K) =

Pr

ln ŜT − lnS0 −
(
r − σ2

2

)
T

σ
√
T

>
lnK − lnS0 −

(
r − σ2

2

)
T

σ
√
T

 ,

where the variable to the left of the inequality sign is standard

normal. This is thus equal to

1−N

lnK − lnS0 −
(
r − σ2

2

)
T

σ
√
T

 .

The symmetry of the normal distribution means that 1 −N(x) =

N(−x), so we may rewrite this as

N

lnS0 − lnK +
(
r − σ2

2

)
T

σ
√
T

 .

This means that the valuation of an obligation to pay K if ST > K

is

Ke−rTN

lnS0 − lnK +
(
r − σ2

2

)
T

σ
√
T

 ,
which appears as part of the Black-Scholes-Merton formula.
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Valuation of claim to receive ST if ST > K

Define h(Q) ≡ 1√
2π
e−Q

2/2 (a std. normal density), w ≡ σ
√
T ,

m ≡ lnS0 + (r − σ2/2)T , Q ≡ (ln ŜT −m)/w.

Then Q is a standard normal variable, and can be rewritten as

ln ŜT − lnS0 −
(
r − σ2

2

)
T

σ
√
T

.

From the definition of Q we have ŜT = ewQ+m. The conditional

expectation we need is

E(ŜT |ŜT > K) = E
(
ewQ+m

∣∣∣∣ewQ+m > K
)

= E

ewQ+m

∣∣∣∣∣∣Q >
lnK −m

w


=

∫ ∞
ln K−m

w
ewQ+mh(Q)dQ.

The integrand can be rewritten (Hull, p. 308) as

1√
2π
e(−Q2+2wQ+2m)/2 = em+w2/2h(Q− w)

The integral can thus be rewritten as

em+w2/2
∫ ∞

ln K−m
w

h(Q− w)dQ = em+w2/2
∫ ∞

ln K−m
w +w

h(Q)dQ =

em+w2/2
∫ ∞

ln K−m
w −w h(Y )dY,

introducing Y = Q−w as a new variable of integration. Clearly, as

Q goes from (lnK−m)/w to∞, Y goes from (lnK−m)/w−w to

∞. The integral with Y is the probability that a standard normal

variable exceeds (lnK −m)/w−w. Notice that em+w2/2 = S0e
rT .

Also multiply by e−rT to get the valuation of the claim,

e−rTE(ŜT |ŜT > K) = S0N

lnS0 − lnK +
(
r + σ2

2

)
T

σ
√
T

 .
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Conclude: The Black-Scholes-Merton formula

c(St, K, T − t, r, σ) ≡ StN(d1)−Ke−r(T−t)N(d2),

where N is the standard normal distribution function,

d1 ≡
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

, and d2 ≡ d1 − σ
√
T − t,

(written with St and T − t as arguments).

• Together, preceding two pages give the formula.

• Valid for European call options on no-dividend stocks.

• For these, early exercise of American calls is not optimal.

• Thus also valid for American call options on these stocks.

• Or in periods when a stock for sure does not pay dividends.

• Can show that the function c(St, K, T − t, r, σ) is

◦ increasing in St,

◦ decreasing in K,

◦ increasing in T − t,
◦ increasing in r, and

◦ increasing in σ,

cf. the discussion on p. 5 of 27 October.

• Put option values can be found through put-call parity.

• Formula used a lot in practice; also modified, e.g. for dividends.

• Hull’s Figs. 9.1–9.2 show properties of formula (also pp 292–

293).
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Dividends in option pricing

• In section 13.12 Hull considers known dividends.

• Both dates and magnitudes are known.

• Much more complicated if one or both are unknown.

• European call: Use St − I instead of St.

• I is present value of dividends to be paid in (t, T ).

• Easily understood from risk-neutral valuation method.

• Call option value is e−r(T−t) max(0, ST −K), but ST must be

interpreted as the process of the share value without the divi-

dend, which has a starting value of St − I at time t.

• In principle the σ to be used should also reflect this process

without dividends (see Hull, fn. 12).

• American call option with dividends: Early exercise?

• 27 Oct. p. 11: If early exercise, then just before div.

• Based on this and known dividends (Hull, p. 299):

◦ Assume the n dividend dates are t1 < t2 < . . . < tn < T.

◦ Corresponding dividends are D1, . . . , Dn.

◦ Consider first whether optimal to exercise at tn.

◦ Hull shows: If Dn ≤ K[1− e−r(T−tn)], never exercise.

◦ If Dn > K[1− e−r(T−tn)], exercise if Stn “big enough.”

◦ Something similar for earlier dividend dates.

◦ No exact formulae.
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◦ Alternative, p. 300: Compare with European options.

◦ One with T as expiration, another with tn.

◦ Use the larger of these two European values as approxima-

tion.

◦ Could maybe extend with more than two dividend dates.
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Volatility, σ

• σ =
√

var[ln(St/St−1)] is called volatility.

• Only variable in Black-Scholes-Merton not directly observable.

• Must be estimated, typically from time-series data.

• If model is true and constant over time, this is easy.

• If time-varying, may use, e.g., last six months.

• (Perhaps also daily, weekly or monthly data make difference.)

• If models of stock price St and of option value ct are true:

• Can compare observed option values with theoretical values.

• If assume cobs.,t = ctheoretical,t ≡ c(St, K, T − t, r, σ):

• (And assume for sure no dividends are paid until time T :)

• Only one variable, σ, not directly observable in equation.

• May solve equation for σ, called implicit volatility.

• Solution cannot be found explicitly, but by numerical methods.

• Interpretation: Market uses B-S-M; what σ does it believe?

• Forward-looking number, as opposed to time-series, historical.
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