
ECON4510 Finance theory Diderik Lund, 27 October 2009

Valuation of options before expiration

• Consider European options with time t until expiration.

• Value now of receiving cT at expiration?

• (Value now of receiving pT at expiration?)

• Have candidate model already: Use CAPM?

• Problematic: Non-linear functions of ST .

• Difficult to calculate E(cT ) and cov(cT , rM).

• Instead: Theory especially developed for options.

• (But turns out to have other applications as well.)

• “Valuation of derivative assets.”

• Value of one asset as function of value of another.

• Will find c(S, . . .) and p(S, . . .).

• Other observable variables as arguments besides S.
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Net value diagrams (Hull, figs. 8-1–8-4, 10-1–10-12)

• Value at expiration minus purchase cost.

• ST on horizontal axsis.

• Example: cT − c, buying a call option.

• Resembles gross value, cT , diagram.

• But removed vertically by subtracting c, today’s price.

• These diagrams only approximately true:

• They show no present-value correction for time lag between −c
and cT .

• There exists no exact relationship between c and cT .

• That exact relationship depends on other variables.

• Next example: c− cT , selling a call option.

• Observe: Selling and buying cancel out for each ST .

• Options redistribute risks (only). Zero-sum.
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Net value diagrams, contd.

• Buy a share and buy two put options with S = K.

• Diagrams show ST − S, 2pT − 2p, ST − S + 2pT − 2p.

• Good idea if you believe ST will be different from S (and K),

but you do not know direction.
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Net value diagrams, contd.

• Buy put option with K = S, plus one share.

• pT − p + ST − S.

• Resembles value of call option.

• Will soon show exact relationship to call option.
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Determinants of option value (informally)

Six candidates for explanatory variables for c and p:

• S, today’s share price. Higher S means market expects higher

ST , implies higher c (because higher cT ), lower p (lower pT ).

• K, the striking price. Higher K means lower c (because lower

cT ), higher p (higher pT ).

• Uncertainty. Higher uncertainty implies both higher c and

higher p, because option owner gains from extreme outcomes

in one direction, while being protected in opposite direction.

(Remark: This is total risk in ST , not β from CAPM.)

• Interest rate. Higher interest rate implies present value of K is

reduced, increasing c, decreasing p.

• Time until expiration. Two effects (for a fixed uncertainty per

unit of time): Longer time implies increased uncertainty about

ST , and lower present value of K. Both give higher c, while

effects on p go in opposite directions.

• Dividends. If share pays dividends before expiration, this re-

duces expected ST (for a given S, since S is claim to both

dividend and ST ). Option only linked to ST , thus lower c,

higher p.

Later: Precise formula for c(S,K, σ, r, t) when D = 0.

Missing from the list: E(ST ). Main achievement!
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Put-call parity

Exact relationship between call and put values.

• Assume underlying share with certainty pays no dividends be-

tween now and expiration date of options.

• Let t = time until expiration date.

• Consider European options with same K, t.

• Consider following set of four transactions:

At expiration

Now If ST ≤ K If ST > K

Sell call option c 0 K − ST
Buy put option −p K − ST 0

Buy share −S ST ST
Borrow (risk free) Ke−rt −K K

c− p− S + Ke−rt 0 0

Must have c = p + S −Ke−rt, if not, riskless arbitrage.
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Put-call parity, contd.

Absence-of-arbitrage proof: Assume the contrary:

• To exploit arbitrage if, e.g., c > p + S −Ke−rt:

• “Buy cheaper, sell more expensive.”

• Sell (i.e., write) call option.

• Buy put option and share.

• Borrow Ke−rt.

• Receive c− p− S + Ke−rt > 0 now.

• At expiration: Net outlay zero whatever ST is.

Put-call parity allows us to concentrate on (e.g.) calls.

Thought experiment

• Keep S,K, r, t unchanged.

• Increased uncertainty must change c and p by same amount.

• Alternatively: Increased E(ST )?

• This should affect c and p in opposite directions.

• But put-call parity does not allow that!

• Shall see later: No effect of E(ST ).
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Allow for uncertain dividends

• Share may pay dividends before expiration of option.

• These drain share value, do not accrue to call option.

• In Norway dividends paid once a year, in U.S., typically 4 times.

• Only short periods without dividends.

• Theoretically easily handled if dividends are known.

• But in practice: Not known with certainty.

• For short periods: S ≈ E(D + ST ).

• For given S, a higher D means lower ST , lower c, higher p.

• Intuitive: High D means less left in corporation, thus option to

buy share at K is less valuable.

• Intuitive: High D means less left in corporation, thus option to

sell share at K is more valuable.

• Absence-of-arbitrage proofs rely on short sales.

• Short sale of shares: Must compensate for dividends.

• Short sale starts with borrowing share. Must compensate the

lender of the share for the dividends missing. (Cannot just

hand back share later, neglecting dividends in meantime.)

• When a-o-arbitrage proof involves shares: Could assume D = 0

with full certainty.

• If not D = 0 with certainty, could get inequalities instead of

equalities.
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More inequality results on option values

Absence-of-arbitrage proofs for American calls:

1. C ≥ 0: If not, buy option, keep until expiration. Get something

positive now, certainly nothing negative later.

2. C ≤ S: If not, buy share, sell (i.e., write) call, receive C−S >
0. Get K > 0 if option is exercised, get S if not.

3. C ≥ S −K: If not, buy option, exercise immediately.

4. When (for sure) no dividends: C ≥ S −Ke−rt: If not, do the

following:

Expiration

Now Div. date If ST ≤ K If ST > K

Sell share S 0 −ST −ST
Buy call −C 0 0 ST −K

Lend −Ke−rt 0 K K

≥ 0 0 ≥ 0 0

A riskless arbitrage.

Important implication: American call option on shares which

certainly will not pay dividends before option’s expiration, should

not be exercised before expiration, since

C ≥ S −Ke−rt > S −K.

Worth more “alive than dead.” When no dividends: Value of

American call equal to value of European.
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Summing up some results

Both American and European call options on shares which for sure

pay no dividends:

C ≥ S −Ke−rt > S −K.

American call options on shares which may pay dividends:

C ≥ S −K.
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American calls when dividends possible: More

• For each dividend payment: Two dates.

– One date for announcement, after which D known.

– One ex-dividend date, after which share does not give the

right to that dividend payment.

• Our interest is in ex-dividend dates.

• Owners of shares on morning of ex-div. date receive D.

• Assume there is a given number of ex-div. dates.

• Say, 2 ex-div. dates, td1, td2, before option’s expiration, T .

• Can show: C > S −K except just before td1, td2, T .

• Assume contrary, C ≤ S −K. Then riskless arbitrage:

• Buy call, exercise just before:

Now Just before next tdi or T

Buy call −C S −K

Sell share S −S
Lend −K Ker∆t

≥ 0 K(er∆t − 1)

• Riskless arbitrage, except if ∆t ≈ 0, just before.

Implication: When possible ex-dividend dates are known, Amer-

ican call options should never be exercised except perhaps just

before one of these, or at expiration.
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Trading strategies with options, Hull ch. 10

• Consider profits as functions of ST .

• Can obtain different patterns by combining different options.

• “If European options were available with every single possible

strike price, any payoff function could in theory be created”

(Hull, p. 219).

• (Question: How could you create discontinuous functions?)

Example:
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Trading strategies, contd.

• Strategies in ch. 10 sorted like this:

– Sect. 10.1: One option, one share.

– Sect. 10.2: 2 or 3 calls, or 2 or 3 puts, different K values.

– End of 10.2, pp. 227–229: Different expiration dates.

– Sect. 10.3: “Combinations”, involving both puts and calls.

• Among these types of strategies, those with different expiration

dates cannot be described by same method as others.

• The first, second, and fourth type:

– Use diagram for values at expiration for each security in-

volved.

– Payoff at expiration is found by adding and subtracting

these values.

– Net profit is found by subtracting initial outlay from payoff.

– Initial outlay could be negative (if, e.g., short sale of share).

– Remember: No exact relationship between payoff and initial

outlay is used in these diagrams — will depend upon, e.g.,

time until expiration, volatility, interest rate.

• For the third type: “Profit diagrams for calendar spreads are

usually produced so that they show the profit when the short-

maturity option expires on the assumption that the long-maturity

option is sold at that time” (Hull, p. 228).
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