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Stochastic processes

These are stochastic variables which evolve over time.

Some of you may know about these from
I time series econometrics,
I other applications in microeconomics or macroeconomics.

Purpose here: Analyze prices of stocks and options.

Binomial tree example of stochastic process in discrete time.

“Discrete time:” Process only defined at certain time points.

Black-Scholes-Merton option values based on another process.
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Stochastic processes, contd.

In continuous time, i.e., stock values St change continuously.

(Although we typically observe only at some points in time.)

Also continuous-valued, i.e., St can be any positive number.

(In typical markets, St only has two or three decimals.)

Could just define that process directly.

Will instead follow Hull, 9th ed., ch. 14.1

First some rather simple, motivating points.

Will then develop motivation for more complications.

18th ed., ch. 13, 7th ed., ch. 12
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The Markov property

St called a Markov process if (the Markov property:) the probability
distribution of all St+∆t for all later dates t + ∆t, as seen from date
t, depends on St only.

For instance, if St is a given number, knowledge of particularly high
outcomes for St−2 and St−1,or for St−0.2 and St−0.1, will not affect
the probability distribution of St+0.1 or St+0.2 or . . ..

Alternatively, we could think that the probability distribution of St+∆t

could depend on the whole history of S ’s, or some part of it, say St−s

for some interval before t. Not Markov.
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The Markov property, contd.

One possible type of dependence, called momentum, is that a falling
sequence St−2 > St−1 > St increases the probability of an outcome
St+1 less than St (i.e., most likely, the fall continues). This is not
Markov. For a Markov process, a rising sequence St−2 < St−1 < St
will, if it has the same value for St , imply exactly the same probability
distribution for St+1 as the falling sequence St−2 > St−1 > St .

Exist many types of Markov processes, with many different types of
probability distributions for, e.g., St+1 conditional on St .

“Markov processes” should thus be viewed as a wide class of
stochastic processes, with one particular common characteristic, the
Markov property.
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The Markov property, economic implications

Connection to weak-form market efficiency.

All available information reflected in today’s St .

Probabilities of future St+∆t depend on St .

But historical S values cannot matter.

Implication of St−∆t for St+∆t? Already in St .
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Implications of Markov property for variance

Markov: S2 − S1 is stochastically independent of S1 − S0.

Also S3 − S2, etc.

Assume we are at time 0, know S0.

Can write S2 = S0 + (S1 − S0) + (S2 − S1).

As seen from time 0, S0 has no variance.

Then:

var(S2) = var[(S2 − S1) + (S1 − S0)] = var(S2 − S1) + var(S1 − S0).

The last equality is due to stochastic independence.
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Implications for variance, contd.

Assume all changes St+1 − St have same variance.

Then var(S2) = var(S2 − S1) + var(S1 − S0) = 2 var(St+1 − St).

More precisely, introduce conditional variance, given S0.

var(S2|S0) = 2 var(St+1 − St).

Likewise: var(S3|S0) = 3 var(St+1 − St).

Generally: var(ST |S0) = T var(St+1 − St).

Implication: (conditional) variance proportional to time.

Standard deviation proportional to square root of time.

(In what follows, like Hull, use X̃ ∼ φ(E (X̃ ), var(X̃ )) to indicate that

X̃ has a normal distribution, but use N(x) = Pr( X̃−E(X̃ )√
var(X̃ )

≤ x) to

denote the standard normal cumulative distribution function.)
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Wiener processes (also called Brownian motion)

So far, in addition to the Markov property, have assumed the variance
of changes is the same for different periods.

Assume now in addition that var(St+1 − St |St) equals 1, and that the
expected change E (St+1 − St |St) equals 0.

(A bit like looking at a standardized distribution, like φ(0, 1). Will call
this process zt (or sometimes z(t)), not St .)

This gives us a particular type of Markov process called a Wiener
process, defined by two properties. zt is a Wiener process if and only
if both are satisfied:

I The change ∆z during a short time interval ∆t is ∆z = ε
√

∆t, where
ε has a standard normal (Gaussian) distribution (with
E (ε) = 0, var(ε) = 1).

I The values of ∆z for non-overlapping intervals ∆t are stochastically
independent.

Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 11 15 April 2015 9 / 33



Wiener processes, contd.

Over longer interval,
z(T )− z(0) is normally
distributed, the sum of N
changes over intervals of
length ∆t, i.e., N∆t = T ;
z(T )− z(0) =

∑N
i=1 εi

√
∆t.

This implies
E (z(T )− z(0)) = 0,
var(z(T )− z(0)) = N∆t =
T . These do not depend on
the length of ∆t.

In limit when ∆t → 0, dz is
change during dt;
var(dz) = dt.

See Fig. 14.1 in Hull 9th
(13.1 in 8th, 12.1 in 7th).
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Generalized Wiener processes

First multiply the Wiener
process dz by a constant, b.

b dz has variance
b2 var(dz) = b2dt.

Then allow for an expected
change different from zero,

dx = a dt + b dz

This amounts to adding a
non-stochastic linear growth
path to the stochastic b dz ,
and is illustrated in Fig. 14.2
in Hull 9th (13.2 in 8th, 12.2
in 7th).
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Generalized Wiener processes, contd.

The generalized Wiener process X is normally distributed with

E (X (T )− X (0)|X (0)) = aT ,

var(X (T )− X (0)|X (0)) = b2T .

The process is also called Brownian motion with drift.
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Generalized Wiener processes; Itô processes

A further generalization: Allow a and b to depend on (x , t),

dx = a(x , t)dt + b(x , t)dz .

This is called an Itô process. In general not normally distributed.

Over a small time interval ∆t we get

∆x ≈ a(x , t)∆t + b(x , t)ε
√

∆t.

For non-overlapping intervals the changes in x are stochastically
independent, so all Itô processes are Markov processes.
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Stochastic process for a stock price

Looking for something more realistic than the binomial tree.

Expected change will not be zero, so cannot use Wiener process.

Could we use generalized Wiener process?

Expected change over interval of length T is aT .

Suppose S0 = 10, a = 1, and that T is measured in years.

Expected stock price in ten years is E (S10|S0 = 10) = 20.

Expected stock price ten years later, E (S20|S0 = 10) = 30.

Also, if S10 equals its expectation, E (S20|S10 = 20) = 30.
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Stochastic process for a stock price, contd.

But the expected growth rate over the time interval (10, 20) is
substantially lower than the expected growth rate over (0, 10), since
growth rates are relative numbers, and 30/20 < 20/10.

More likely shareholders require constant expected growth rate.

Need exponential expected path, not linear expected path.

Will obtain this by letting E (dS) = µ S dt.

For the non-stochastic part (or, if σ = 0): dS
dt = µ S .

Integrating between 0 and T : ST = S0e
µT when σ = 0.

This leads to a suggestion of

dS = µ S dt + σ dz

or, better,
dS = µ S dt + σ S dz .
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Stochastic process for a stock price, contd.

From previous slide: a suggestion of

dS = µ S dt + σ dz

or
dS = µ S dt + σ S dz .

Choose the latter so that a relative change in S not only has a
constant expected value, µ dt, but also a constant variance, σ2dt,

dS

S
= µ dt + σ dz .

This stock price process process is basis for the most widespread
option pricing theories, like the one in ch. 15 of Hull (9th ed.),
Black-Scholes-Merton (8th ed., ch. 14, 7th ed., ch. 13).

The process is called geometric Brownian motion with drift.
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Stochastic process for a stock price, contd.

Since S appears on right-hand side in dS formula: Not a generalized
Wiener process, but a bit more complicated.

dS is an Itô process, with a(S , t) = µS and b(S , t) = σS .

Different stocks will differ in µ and/or σ.

Stock i has constants µi , σi , stock j has constants µj , σj

Hull discusses these variables in section 14.4 (9th ed.).2

Remember: Hull’s book does not rely on the CAPM.

Imprecise discussion of how µ depends on rf and risk.

Footnote3 5, p. 311, 9th ed., means µ depends on covariance, not on
σ.

28th ed., sect. 13.4, 7th ed., sect. 12.4
38th ed., fn. 4, p. 289, 7th ed., fn. 4, p. 268
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Functions of Itô processes
When x is an Itô process, dx = a(x , t)dt + b(x , t)dz :

I Is a function G of x also an Itô process?
I If yes, what happens to the functions a(x , t) and b(x , t)?
I Put differently: G will also have functions like these.
I What do the two functions look like for G?

Motivation: Call option value as function of S .

Find this via a general rule, Itô’s lemma.

A bit more complicated than suggested above.

Call option not only function of S ; also of t.

Option’s value depends on time until expiration.

For some given S , different t’s give different c ’s.
Thus, the more general questions are:

I If x is an Itô process, is G (x , t) an Itô process?
I If yes, what do the “a and b functions” look like for G?

The answers are given by Itô’s lemma.

Will not prove this mathematically.

But will show how and why it differs from usual differentiation.
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Itô’s lemma

Assume x is an Itô process:

dx = a(x , t)dt + b(x , t)dz , where z is a Wiener process.

Then G (x , t) is also an Itô process:

dG =

(
∂G

∂x
a +

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt +

∂G

∂x
b dz .

We recognize the general form of an Itô process.

The expression above is Hull’s equation4 (14.12) (9th ed.).

In fact, this is short-hand, dropping arguments.

48th ed., eq. (13.12), 7th ed., eq. (12.12)
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Itô’s lemma, contd.

Contains six different functions of (x , t).

Both a, b,G , and the partial derivatives of G .

Right-hand side should really be written like this:

(
∂G (x , t)

∂x
a(x , t) +

∂G (x , t)

∂t
+

1

2

∂2G (x , t)

∂x2
[b(x , t)]2

)
dt

+
∂G (x , t)

∂x
b(x , t)dz .

Perhaps this looks complicated, but:

In our applications, G , a, and b are fairly simple.
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Why not ordinary differentiation? Hull, p. 319f (9th ed.)
(8th ed., p. 297f, 7th ed., p. 275 f)

Approximation of a function by its tangent:

∆G ≈ dG

dx
∆x

when G is a function of one variable, x .

Holds precisely in limit as ∆x → 0.

As long as ∆x 6= 0, can use Taylor series expansion:

∆G =
dG

dx
∆x +

1

2

d2G

dx2
∆x2 +

1

6

d3G

dx3
∆x3 + . . .

As ∆x → 0, higher-order terms vanish.

G (x , y), two dimensions, a tangent plane:

∆G ≈ ∂G

∂x
∆x +

∂G

∂y
∆y .
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Why not use ordinary differentiation, contd.

When both ∆x and ∆y 6= 0, can use Taylor series:

∆G =
∂G

∂x
∆x+

∂G

∂y
∆y+

1

2

∂2G

∂x2
∆x2+

∂2G

∂x∂y
∆x ∆y+

1

2

∂2G

∂y2
∆y2+. . .

Again, precisely in limit as ∆x → 0 and ∆y → 0:

dG =
∂G

∂x
dx +

∂G

∂y
dy .

Want to find a similar expression for Itô processes.

But all higher-order terms do not vanish.
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Itô’s lemma vs. ordinary differentiation

Assume x is an Itô process:

dx = a(x , t)dt + b(x , t)dz , where z is a Wiener process.

Let G be a function G (x , t), and use Taylor expansion:

∆G =
∂G

∂x
∆x +

∂G

∂t
∆t+

1

2

∂2G

∂x2
∆x2 +

∂2G

∂x∂t
∆x ∆t+

1

2

∂2G

∂t2
∆t2 + . . .

Only novelty here: Have called second variable t, not y .

When ∆x → 0, need to observe the following.

∆x = a ∆t + bε
√

∆t implies:

(∆x)2 = b2ε2 ∆t + terms of higher order.

Since ∆x contains a
√

∆t term, normal rules don’t work.

Must include extra term with second-order partial derivative.

The extra term contains ε2, and ε is stochastic.
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Itô’s lemma vs. ordinary differentiation, contd.

Hull explains why E (ε2∆t) = ∆t.

Hull also explains that var(ε2∆t) is of order (∆t)2.

Variance approaches zero fast as ∆t → 0.

Thus: In limit ε2∆t is nonstochastic, = ∆t.

This gives us the following formula in the limit:

dG =
∂G

∂x
dx +

∂G

∂t
dt +

1

2

∂2G

∂x2
b2dt

Insert for dx from above to find the form we used above:

dG =

(
∂G

∂x
a +

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt +

∂G

∂x
b dz .
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Example of application of Itô’s lemma

Consider the stock price process from slide 16:

Assume dS = µS dt + σS dz ; z is a Wiener process.

What kind of process is lnS?

Natural question; deterministic part of S is exponential in t.

Might believe that deterministic part of lnS is linear in t.

Observe this application of Itô’s lemma is fairly simple:
I “a(S , t) function” of S process is µS . Simple, and no t.
I “b(S , t) function” of S process is σS . Simple, and no t.
I The G (S , t) function is lnS . Fairly simple, and no t.

Know from Itô’s lemma that lnS is an Itô process.

But what are the “a and b functions” of the G process?

Will turn out that they are very simple. Constants, no S , no t.

But slightly less simple than one might have thought.

The constant which multiplies dt is not µ.

Would be natural suggestion based on deterministic ST = S0e
µT .

Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 11 15 April 2015 25 / 33



Example; lognormal property, Hull, sect. 14.7 (9th ed.)
(8th ed., sect. 13.7, 7th ed., sect. 12.6)

With G (S , t) ≡ lnS , need three partial derivatives:

∂G

∂S
=

1

S
,
∂2G

∂S2
= − 1

S2
,
∂G

∂t
= 0.

Then Itô’s lemma says that:

dG =

(
1

S
µS + 0 +

1

2

(
− 1

S2

)
(σS)2

)
dt +

1

S
σS dz

=

(
µ− σ2

2

)
dt + σ dz .

So this is an Itô process with constant a and b functions.

Implies that lnS is a generalized Wiener process.

Can use formulae from slide 12.
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Example, contd.

The change lnST − lnS0 is normally distributed:

lnST − lnS0 ∼ φ
[(
µ− σ2

2

)
T , σ2T

]
,

which implies (by adding the known ln S0)

lnST ∼ φ
[

lnS0 +

(
µ− σ2

2

)
T , σ2T

]
.

lnS is normally distributed.

By definition then, S is lognormally distributed.

Not obvious earlier, but by using Itô’s lemma.
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The lognormal distribution of stock prices

On slide 15, required an exponential expected path, ST = S0e
µT .

Could thus not use the generalized Wiener process for S .

(Would have implied S having a normal distribution.)

Found instead something similar for relative changes in S ,

dS

S
= µ dt + σ dz .

This implies S is lognormal, ln(S) is normal.

Relation between these two distributions may be confusing.

Remember that ln(S) is not linear, thus E [ln(S)] 6= ln[E (S)]:

I E [ln(ST )|S0] = ln(S0) + (µ− σ2/2)T ,

I E (ST |S0) = S0e
µT so that ln[E (ST |S0)] = ln(S0) + µT .
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The lognormal distribution of stock prices

The variance expression is simpler for ln(ST ) than for ST :

I var[ln(ST )|S0] = σ2T ,

I var(ST |S0) = S2
0 e

2µT (eσ
2T − 1).

Footnote 2 on p. 323 in Hull (9th ed.)5 refers to a note on this:

http://www-2.rotman.utoronto.ca/∼hull/technicalnotes/TechnicalNote2.pdf

ST = S0e
xT defines continuously-compounded rate of return x .

Its distribution is x ∼ φ
(
µ− σ2

2 ,
σ2

T

)
.

58th ed., fn. 2, p. 301, 7th ed., fn. 2, p. 279
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Monte Carlo simulation (Hull sections 14.3 and 21.6)

(8th ed., sect. 13.3 and 20.6, 7th ed., sect. 12.3 and 19.6)

From lecture 10: Can find option values as expectations.
I Not based on actual probabilities, but on “risk neutral” probabilities.

Next lecture finds c(S ,K ,T , r , σ) from lognormal distribution.

Numerically, e.g., c(10, 8, 2, 0.05, 0.2): Exists alternative method.

For complicated nonlinear functions: Use Monte Carlo simulation:
I Computer draws numbers, ST , from a probability distribution.
I Typically thousands of independent drawings from same distribution.
I Gives frequency distribution, similar to probability distribution.
I For each draw, compute some function of it, e.g., max(0,ST − K ).
I Average for, e.g., 10 000 draws gives estimate of E [max(0,ST − K )].
I Could also calculate, e.g., var[max(0,ST − K )], but less interesting.
I Expectation gives option value if use risk neutral probabilities for ST .

F Just need to take present value, E [max(0, ŜT − K)]e−rT .

I Can also be done for many periods, and for functions of many variables.
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Monte Carlo simulation in Excel spreadsheet

Consider c(10, 8, 2, 0.05, 0.2) when stock price is lognormal.

First determine parameters of probability distribution of ln(Ŝ2).

For “risk neutral” process, should let µ = r .

Use S0 = 10, and observe that σ = 0.2⇒ σ2 = 0.04.

Use these µ, S0, σ
2 in formula from slide 27,

ln Ŝ2 ∼ φ
[

ln(10) +

(
0.05− 0.04

2

)
· 2, 0.04 · 2

]
.

Create lognormal sample using Excel’s RAND, NORMSINV, and EXP.

For each ST in sample, calculate function values using Excel’s MAX.

Across sample, estimate expectation using Excel’s AVERAGE.

Next time: Exact formula, may then compare results with M-C.
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Monte Carlo simulation in Excel, contd.

Column B contains sample of 100 numbers uniformly distributed on [0, 1].

NORMSINV applied to uniform distribution gives normal distribution.
The full contents of cell C3, which gives the normally distributed ln(S2):

The full contents of cell F11, which gives the c0, the call option value:

(This is Norwegian; comma as decimal sign; semicolon as separator.)
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Monte Carlo: How obtain the desired distribution?

Statement from previous page needs explanation:

“NORMSINV applied to uniform distribution gives normal distribution.”

Excel’s RAND() gives uniform random numbers; but we need normal.

Function to use is the inverse of the cumulative distribution function.

(Works also for other distributions than normal, if know inverse cdf.)

For standard normal, this inverse is the Excel function NORMSINV.

Cumulative distribution function for standard normal is N in Hull.

Defined by N(x) = Pr(X̃ ≤ x) when X̃ ∼ φ(0, 1), standard normal.

N is monotonically increasing, continuous, thus has inverse N−1(u).

If Ũ is uniform on [0, 1], then X̃ ≡ N−1(Ũ) is standard normal.

Proof: Pr[N−1(Ũ) ≤ x ] = Pr[Ũ ≤ N(x)] = N(x).

First equality follows since the monotonic N is applied to both sides.

Second equality is a property of Ũ; its cdf is F (u) = u when u ∈ [0, 1].
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