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Markets for state-contingent claims
(Danthine and Donaldson1 (3rd) ch. 9 and 11.1–4; Cowell ch. 8.6)

Theoretically useful framework for markets under uncertainty.

Used both in simplified versions and in general version, known as
complete markets (komplette markeder) (definition later).

Extension of standard general equilibrium and welfare theory.

Developed by Kenneth Arrow and Gerard Debreu during 1950’s.

First and second welfare theorem hold under some assumptions.

Not very realistic. Shows how strict assumptions are needed to extend
the two welfare theorems to world of uncertainty.

Description of one-period uncertainty:

A number of different states (tilstander) may occur, numbered
θ = 1, . . . ,N.

Here: N is a finite number.

Exactly one of these will be realized.
12nd ed., ch. 8 and 10.1–4
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Markets for state-contingent claims, contd.

Description of one-period uncertainty, contd.:

All stochastic variables depend on this state only: As soon as the
state has become known, the outcome of all stochastic variables are
also known. Any stochastic variable X̃ can then be written as X (θ).

“Knowing probability distributions” means knowing each state’s (i)
probability and (ii) outcomes of stochastic variables.

When N is finite, probability distributions cannot be continuous.
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Securities with known state-contingent outcomes

Consider M securities (verdipapirer) numbered j = 1, . . . ,M.

May think of as shares of stock (aksjer).

Value of one unit of security j will be pjθ if state θ occurs. These
values are known.

Buying numbers Xj of security j today, for j = 1, . . . ,M, will give
total outcomes in the N states as follows: p11 · · · pM1

...
...

p1N · · · pMN

 ·
 X1

...
XM

 =


∑

pj1Xj
...∑

pjNXj

 .
An n × 1 vector with one element for each state.
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Known state-contingent outcomes, contd.

If prices today (period zero) are p10, . . . , pn0, this portfolio costs:

[p10 · · · pM0] ·

 X1
...

XM

 =
∑

pj0Xj .

Observe that the vector of X ’s here is not a vector of portfolio
weights. Instead each Xj is the number of shares (etc.) which is
bought of each security. (For a bank deposit this would be an unusual
way of counting how much is invested, but think of each krone or
Euro as one share.)
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Constructing a chosen state-contingent vector

If we wish some specific vector of values (in the N states), can any such
vector be obtained? Suppose we wish Y1

...
YN

 .
Can be obtained if there exist N securities with linearly independent
(lineært uavhengige) price vectors, i.e. vectors p11

...
p1N

 , · · · ,
 pN1

...
pNN

 .
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Complete markets
Suppose N such securities exist, numbered j = 1, . . . ,N, where N ≤ M. A
portfolio of these may obtain the right values: p11 · · · pN1

...
...

p1N · · · pNN

 ·
 X1

...
XN

 =

 Y1
...

YN


since we may solve this equation for the portfolio composition X1

...
XN

 =

 p11 · · · pN1
...

...
p1N · · · pNN


−1

·

 Y1
...

YN


If there are not as many as N “linearly independent securities,” the system
cannot be solved in general. If N linearly independent securities exist, the
securities market is called complete. The solution is likely to have some
negative Xj ’s. Thus short selling must be allowed.

Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 13 29 April 2015 7 / 34



Remarks on complete markets

To get any realism in description: N must be very large.

But then, to obtain complete markets, the number of different
securities, M, must also be very large.

Three objections to realism:
I Knowledge of all state-contingent outcomes.
I Large number of different securities needed.
I Security price vectors linearly dependent.

In an extension to many periods, can show that the necessary
numbers of linearly independent securities is equal to the maximal
dimension of new information arriving at any point in time. This may
be less than the number of states.
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Arrow-Debreu securities

Securities with the value of one money unit in one state, but zero in
all other states.

Also called elementary state-contingent claims, (elementære
tilstandsbetingede krav), or pure securities.

Possibly: There exist N different A-D securities.
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Arrow-Debreu securities, contd.

If exist: Linearly independent. Thus complete markets.

If not exist, but markets are complete: May construct A-D securities
from existing securities. For any specific state θ, solve:

 X1
...

XN

 =

 p11 · · · pN1
...

...
p1N · · · pNN


−1

·



0
...
0
1
0
...
0


with the 1 appearing as element number θ in the column vector on the
right-hand side.
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State prices

The state price for state number θ is the amount you must pay today to
obtain one money unit if state θ occurs, but zero otherwise. Solve for
state prices:

qθ = [p10 · · · pN0]

 p11 · · · pN1
...

...
p1N · · · pNN


−1

·



0
...
0
1
0
...
0


.

State prices are today’s prices of A-D securities, if those exist.
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Risk-free interest rate

To get one money unit available in all possible states, need to buy one of
each A-D security. Like risk-free bond.

Risk-free interest rate rf is defined by:

1

1 + rf
=

N∑
θ=1

qθ.
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Pricing and decision making in complete markets
All you need is the state prices. If an asset has state-contingent values Y1

...
YN


then its price today is simply

[q1 · · · qN ] ·

 Y1
...

YN

 =
N∑
θ=1

qθYθ.

Can show this must be true for all traded securities.

For small potential projects: Also (approximately) true. Exception for
large projects which change (all) equilibrium prices.

Typical investment project: Investment outlay today, uncertain future
value. Accept project if outlay less than valuation (by means of state
prices) of uncertain future value.
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Absence-of-arbitrage proof for pricing rule
If some asset with future value vector Y1

...
YN


is traded for a different price than

[q1 · · · qN ] ·

 Y1
...

YN

 ,
then one can construct a riskless arbitrage, defined as

A set of transactions which gives us a net gain now, and with
certainty no net outflow at any future date.

A riskless arbitrage cannot exist in equilibrium when people have the same
beliefs, since if it did, everyone would demand it. (Infinite demand for
some securities, infinite supply of others, not equilibrium.)
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Proof contd., exploiting the arbitrage
Assume that a claim to  Y1

...
YN


is traded for a price

pY < [q1 · · · qN ] ·

 Y1
...

YN

 .
“Buy the cheaper, sell the more expensive!” Here: Pay pY to get claim to
Y vector, shortsell A-D securities in amounts {Y1, . . . ,YN}, cash in a net
amount now, equal to

[q1 · · · qN ] ·

 Y1
...

YN

− pY > 0.
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Proof contd., exploiting the arbitrage

Whichever state occurs: The Yθ from the claim you bought is exactly
enough to pay off the short sale of a number Yθ of A-D securities for that
state. Thus no net outflow (or inflow) in period one.

Similar proof when opposite inequality.

In both cases: Need short sales.
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Value additivity for complete markets (D&D, pp. 335f)

(2nd ed., pp. 204f)

Assume asset c gives a payoff z̃c = Az̃a + Bz̃b.

A,B are constants, z̃a, z̃b are payoffs off assets a, b.

Then today’s price of c is pc = Apa + Bpb, the same linear
combination.

If not: Riskless arbitrage.

Also true for CAPM and option pricing models.

Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 13 29 April 2015 17 / 34



Separation principle for complete markets

As long as firm is small enough — its decisions do not affect market
prices — all its owners will agree on how to decide on investment
opportunities: Use state prices.

Everyone agrees, irrespective of preferences and wealth.

Also irrespective of probability beliefs — may believe in different
probabilities for the states to occur.

Exception: All must believe that the same N states have strictly
positive probabilities. (Why?)
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Individual utility maximization with complete markets

Assume for simplicity that A-D securities exist. Consider individual who
wants consumption today, c0, and in each state next period, cθ. Budget
constraint:

W0 =
∑
θ

qθcθ + c0.

Let πθ ≡ Pr(state θ). Assume separable utility function

u(c0) + E [U(cθ)].

We assume that U ′ > 0,U ′′ < 0 and similarly for the u function. (Possibly
u() 6= U(), maybe only because of time preference. Most typical
specification is that U() ≡ 1

1+δu() for some time discount rate δ.)
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Individual utility maximization, contd.

max

[
u(c0) +

∑
θ

πθU(cθ)

]
s.t. W0 =

∑
θ

qθcθ + c0

has f.o.c.

πθU ′(cθ)

u′(c0)
= qθ for all θ

(and the budget constraint).
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Remarks on first-order conditions

πθU ′(cθ)

u′(c0)
= qθ for all θ.

Taking q1, . . . , qN as exogenous: For any given c0, consider how to
distribute budget across states. Higher πθ ⇒ lower U ′(cθ)⇒ higher cθ.
Higher probability attracts higher consumption.

Consider now whole securities market. For simplicity consider a pure
exchange economy with no productions, so that the total consumption in
each future state,

c̄θ =
∑

individuals

cθ,

is given. Assume also everyone believes in same π1, . . . , πN . If some πθ
increases, everyone wants own cθ to increase. Impossible. Equilibrium
restored through higher qθ.
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Remarks on first-order conditions, contd.

Assume now c̄θ increases. Generally people’s U ′(cθ) will decrease.
Equilibrium restored through decreasing qθ. Less scarcity in state θ leads
to lower price of consumption in that state.

It is clear that we need an equilibrium model in order to understand how
the equilibrium prices depend on exogenous variables (like endowments
and preference parameters). There is an example in exercise for seminar
no. 10, and more in the remaining pages of this lecture.
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State contingent claims: Equilibrium and Pareto Optimum

(Danthine & Donaldson, 3rd ed., sections 9.3–9.4)2

Simplify as before: Two periods, t = 0, 1; N different states of the world
may occur at t = 1; only one consumption good.

Each consumer, k, derives utility at t = 0 from two sources:

Consumption at t = 0, ck
0 .

Claims to consumption at t = 1 in the different states which may
occur; this is an N-vector, (ck

θ1
, ck
θ2
, . . . , ck

θN
).

Welfare theorems hold in this setup:

Each time-and-state specified consumption good must be seen as a
separate type of good.

Then the two welfare theorems work just as in a static model without
uncertainty.

22nd ed., sections 8.3–8.4
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Equilibrium and Pareto Optimum, contd.

Pareto Optimum: Equalities of marginal rates of substitution (MRS).

Market solution: Consumers equalize MRS’s to price ratios, and
achieve P.O.

First welfare theorem: Competitive market solution is Pareto Optimal.

Second welfare theorem: Any Pareto Optimum can be obtained as a
competitive market solution by distributing the initial endowments
suitably amongst the consumers.

Will look at an example to strengthen the intuitive understanding.
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Example: Potato-growers (exam ECON3215/4215 f–2010)

Two farmers (k=1,2), both growing potatoes, but different fields.

Derive utility from consumption of potatoes at t = 1 only.

N = 2, state 1 called M (mild weather), state 2 F (frost); Pr(M) = π.

Farmer 1: Utility E [U1(C̃1)], output 10 in M, 2 in F.

Farmer 2: Utility E [U2(C̃2)], output 6 in M, 4 in F.

Will discuss what is a Pareto Optimum, first-order conditions.

Specified utility function, E [−e−bk C̃k ]. (What is bk?)

With this utility function, discuss
I Which allocations are Pareto Optimal? (a) for b1 = b2, and (b) for

b1 = 4b2.
I Show that optimum means no trade if b2 = 4b1.
I What direction is the trade if b2 < 4b1, and vice versa? Interpretation?
I If b2 is fixed, what happens with the optimum if b1 → 0?
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Indifference curves for farmer 1

Consumption in state M
along horizontal axis,
consumption in state F
along vertical.

Indifference curves look
similar to those we know
from ordinary consumer
theory.

These indifference curves
depend on probabilities.

Later we will simplify and
assume two persons
believe in the same
probabilities; then they
can be canceled from our
discussion today.

ECON4510 Finance theory Diderik Lund, 3 May 2012

Indifference curves for farmer 1.

16

Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 13 29 April 2015 26 / 34



Pareto Optimum in the two-farmer example

Consider first what the problem looks like without specifying the utility
function. P.O. is achieved by maximizing expected utility of one farmer for
each level of expected utility of the other, given the resource constraint.

max
C1
M ,C

1
F

πU1(C 1
M) + (1− π)U1(C 1

F )

subject to
πU2(C 2

M) + (1− π)U2(C 2
F ) = Ū2,

and
C 1
M + C 2

M = 16,

and
C 1
F + C 2

F = 6.

The two resource constraints say that the total amount used in state M is
16, the sum of outputs in that state, and similarly for state F.
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Pareto Optimum, contd.

There is no consideration here of original ownership of these outputs, or of
budget constraints that should be satisfied.

Pareto Optimum could come about by the action of a planner who starts
by confiscating the ownership of claims to the outputs, then hands these
out to the two farmers.

The first-order conditions for how to hand out will show that this can be
done in a variety of ways, along a contract curve in the Edgeworth box.
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Pareto Optimum, contd.

The Lagrangian for the maximization problem is:

L(C 1
M ,C

1
F ,C

2
M ,C

2
F ) = πU1(C 1

M) + (1− π)U1(C 1
F )

+µ[πU2(C 2
M) + (1−π)U2(C 2

F )− Ū2] +ν(C 1
M + C 2

M −16) + ξ(C 1
F + C 2

F −6).

You can work out the first-order conditions for yourself. They imply:

πU ′1(C 1
M)

(1− π)U ′1(C 1
F )

=
πU ′2(C 2

M)

(1− π)U ′2(C 2
F )
.

The probabilities cancel due to the fact that the two farmers have the
same beliefs:

U ′1(C 1
M)

U ′1(C 1
F )

=
U ′2(C 2

M)

U ′2(C 2
F )
.
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Pareto Optimum, contd.

We introduce the resource constraints, eliminating C 2
M and C 2

F :

U ′1(C 1
M)

U ′1(C 1
F )

=
U ′2(16− C 1

M)

U ′2(6− C 1
F )

.

The general idea is illustrated in the Edgeworth box on the next slide,
although that box has the total output equal to 6 for both states. All
points of tangency between the indifference curves of the two farmers are
Pareto Optima.

The collection of these points is sometimes called the contract curve. If
the planner wants a Pareto Optimum, there are many to choose from.
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Edgeworth box, quadratic and symmetric

A case when the two are equally
risk averse.

Length of horizontal side equals
total endowment (across
farmers) in state M, here set
equal to 6.

Length of vertical, similar for
state F, here also 6.

Each point in box describes one
particular distribution of total
output between the two,
simultaneously for state M and
state F.

In this case, the contract curve
becomes diagonal.

ECON4510 Finance theory Diderik Lund, 3 May 2012

Edgeworth box when the two are equally risk averse. The length of

the horizontal side is equal to the total endowment (across farmers)

in state M , here set equal to 6. The length of the vertical side

is similar for state F , here also set to 6. Each point in the box

describes one particular distribution of the total output between

the two farmers, simultaneously for state M and state F . In this

particular case the contract curve is the diagonal.

19
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Pareto Optimum, contd.

Introduce now E [Uk(C̃k)] ≡ E [−e−bk C̃k ], with bk > 0 a constant. When
the U function is specified like this, we can find a formula for the contract
curve and plot it in the Edgeworth box. The first-order condition, equality
between MRS’s (from slide 29), is now:

b1e−b1C
1
M

b1e−b1C
1
F

=
b2e−b2C

2
M

b2e−b2C
2
F

=
b2e−b2(16−C

1
M)

b2e−b2(6−C
1
F )
.

This can be solved for

−b1(C 1
M − C 1

F ) = −b2(16− C 1
M − 6 + C 1

F ),

which gives

C 1
F = C 1

M −
10

1 + b1
b2

.

This is a straight line with slope 45 degrees.
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Edgeworth box, rectangular, for the given numbers

ECON4510 Finance theory Diderik Lund, 3 May 2012

If we let b1 = b2, we find the contract curve

C1
F = C1

M − 10

1 + b1
b2

= C1
M − 5.

If we let b1 = 1
4b2, we find

C1
F = C1

M − 8,

which is a line through the original allocation, (C1
M , C1

F ) = (10, 2).

Thus, for this relationship between the two farmers’ aversions to

risk, the original allocation was already Pareto Optimal. With this

as a starting point, if b1 is increased while b2 is held fixed, the

contract curve moves to the left. Farmer 1 is suffering too much

from the highly skewed distribution, C1
M > C1

F . On the other

hand, if b1 → 0, the contract curve approaces C1
F = C1

M − 10,

which means that farmer 2 avoids all risk.

21

If we let b1 = b2, we find the contract curve:

C 1
F = C 1

M −
10

1 + b1
b2

= C 1
M − 5.
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Pareto Optimum for different values of b1, b2

If we let b1 = 1
4b2, we find

C 1
F = C 1

M − 8,

which is a line through the original allocation, (C 1
M ,C

1
F ) = (10, 2). Thus,

for this relationship between the two farmers’ aversions to risk, the original
allocation was already Pareto Optimal.

With this as a starting point, if b1 is increased while b2 is held fixed, the
contract curve moves to the left. Farmer 1 is suffering too much from the
highly skewed distribution, C 1

M > C 1
F . On the other hand, if b1 → 0, the

contract curve approaces C 1
F = C 1

M − 10, which means that farmer 2
avoids all risk.
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