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von Neumann and Morgenstern’s theory

“Expected utility”

Objects of choice called lotteries. Simplification: Each has only

two possible, mutually exclusive outcomes. Notation: L(x, y, π)

means:
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(The L() notation means: The first two arguments are outcomes.

Then comes the probability (here: π ∈ [0, 1]) of the outcome men-

tioned first (here: x).)

Axiom C.2 (D&D, p. 31) says that an individual is able to compare

and choose between such stochastic variables, and that preferences

are transitive. Axiom C.3 says that preferences are continuous.

Assumptions like C.2 and C.3 are known from standard consumer

theory. Axiom C.1 says that only the probability distribution mat-

ters.

Axioms C.4–C.7 specific to preferences over lotteries. The theory

assumes axioms C.1–C.7 hold for the preferences of one individual.

Using the theory, we usually assume it holds for all individuals,

but their preferences may vary within the restrictions given by the

theory.
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Axiom C.4 Independence:

Let x, y and z be outcomes of lotteries, and assume y �∼ z. Then

L(x, y, π) �∼ L(x, z, π).

Axiom C.5

Among all lotteries (and outcomes), there exists one best lottery, b,

and one worst, w, with b � w.

Axiom C.6

If x � y � z, then there exists a unique π such that

y ∼ L(x, z, π).

(Not obvious. What about life and death?)

Axiom C.7

Assume x � y. Then

L(x, y, π1) � L(x, y, π2) ⇔ π1 > π2,

(Actually: None of axioms are obvious.)
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Derivation of theorem of expected utility

With reference to b and w define a function π() such that

for all lotteries z, z ∼ L(b, w, π(z)).

This probability exists for all z by axiom C.6. By axiom C.7 it is

unique and can be used to rank outcomes, since π(x) > π(y) ⇒
x � y. Thus π() is a kind of utility function. Will prove it has the

expected utility property: The utility of a lottery is the expected

utility from its outcomes.

Digression: A utility function assigns a real number to any object

of choice, such that a higher number is given to a preferred object,

and equal numbers are given to objects of indifference. If x and y

are money outcomes or otherwise quantities of a (scalar) good, and

there is no satiation, then π is an increasing function.
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The expected utility property

Consider a lottery L(x, y, π), which means:
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When x ∼ L(b, w, πx) and y ∼ L(b, w, πy), then there will be

indifference between L(x, y, π) and
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So that

L(x, y, π) ∼ L(b, w, ππx + (1 − π)πy).

Thus the “utility” of L(x, y, π) is ππx + (1 − π)πy.
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Write X̃ for the stochastic variable with outcomes x1 with proba-

bility π1 and x2 with probability π2 = 1−π1. The utility expression

ππ1 +(1−π)π2 can be interpreted as E[π(X̃)], which explains why

it is called expected utility.

Notation: Usually the letter U is chosen for the utility function

instead of π, and expected utility of X̃ is written E[U(X̃)].

Possible to extend to ordering of lotteries of more than two out-

comes,

E[U(X̃)] =
S∑

s=1
πsU(xs),

even to a continuous probability distribution,

E[U(X̃)] =
∫ ∞
−∞ U(x)f(x)dx.

Will not look at this more formally.
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Criticism of vN-M expected utility

• Some experiments indicate that many people’s behavior in some

situation contradicts expected utility maximization.

• Exist alternative theories, in particular generalizations (alter-

native theories in which expected utility appears as one special

case).

• Nevertheless much used in theoretical work on decisions under

uncertainty.

Example of when vN-M may not work

• Suppose every consumption level below 5 is very bad.

• Suppose, e.g., that U(4) = −10, U(6) = 1, U(8) = 4, U(10) =

5.

• Then E[U(L(4, 10, 0.1))] = 0.1 · (−10) + 0.9 · 5 = 3.5, while

E[U(L(6, 8, 0.1))] = 0.1 · 1 + 0.9 · 4 = 4.6.

• But even with the huge drop in U level when consumption

drops below 5, one will prefer the first of these two alternatives

(the lottery L(4, 10, π)) to the other (L(6, 8, π)) as soon as π

drops below 1/12.

• If one outcome is so bad that someone will avoid it any cost,

even when its probability is very low, then that person’s behav-

ior contradicts the vN-M theory.

• In particular, axiom C.6 is contradicted.
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Allais paradox

Behavior at odds with vN-M theory, observed by French economist

Maurice Allais. Consider the following lotteries:

• L3 = L(10000, 0, 1)

• L4 = L(15000, 0, 0.9)

• L1 = L(10000, 0, 0.1) = L(L3, 0, 0.1)

• L2 = L(15000, 0, 0.09) = L(L4, 0, 0.1)

People asked to rank L1 versus L2 often choose L2 � L1. (Probabil-

ity of winning is just slightly less, while prize is 50 percent bigger.)

But when these same people are asked to rank L3 versus L4, they

often choose L3 � L4. (With strong enough risk aversion, the drop

in probability from 1 to 0.9 is enough to outweigh the gain in the

prize.) Is this consistent with the vN-M axioms?
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Uniqueness of U function?

Given a vN-M preference ordering of one individual, have now

shown we can find a U function such that

X̃ � Ỹ if and only if E[U(X̃)] > E[U(Ỹ )].

Is U unique? No, depends on b and w, but preferences between X̃

and Ỹ do not.

Define an increasing linear transformation of U ,

V (x) ≡ c1U(x) + c0,

where c1 > 0 and c0 are constants. This represents the preferences

of the same individual equally well since

E[V (X̃)] = c1E[U(X̃)] + c0

for all X , so that a higher E[U(X̃)] gives a higher E[V (X̃)].

But not possible to do similar replacement of U with any non-

linear transformation of U (as opposed to ordinal utility functions

for usual commodities). For instance, E{ln[U(X̃)]} does not neces-

sarily increase when E[U(X̃)] increases. So ln[U()] cannot be used

to represent the same preferences as U().
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Risk aversion

For those preference orderings which (i.e., for those individuals who)

satisfy the seven axioms, define risk aversion.

Compare a lottery Ỹ = L(a, b, π) (where a, b are fixed monetary

outcomes) with receiving E(Ỹ ) = πa + (1− π)b for sure. Whether

the lottery or its expectation is preferred, depends on the curvature

of U :

• If U is linear, then U [E(Ỹ )] = E[U(Ỹ )], and one is indifferent

between lottery and its expectation. One is called risk neutral.

• If U is concave, then U [E(Ỹ )] ≥ E[U(Ỹ )], and one prefers the

expectation. One is called risk averse.

• If U is convex, then U [E(Ỹ )] ≤ E[U(Ỹ )], and one prefers the

lottery. One is called risk attracted.

The inequalities follow from Jensen’s inequality (see Sydsæter,

Strøm and Berck, equations 7.15–7.17, or D&D, p.47). If U is

strictly concave or convex, the inequalities are strict, except if Ỹ is

constant with probability one.

Quite possible that many have U functions which are neither ev-

erywhere linear, everywhere concave, nor everywhere convex. Then

one does not fall into one of the three categories.
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Assume risk aversion

(Does not follow from the seven axioms.)

• Most common behavior in economic transactions.

• Explains the existence of insurance markets.

• But what about money games? Expected net result always

negative, so a risk-averse should not participate. Cannot be

explained by theories taught in this course.

• Some of our theories will collapse if someone is risk neutral or

risk attracted. Those will take all risk in equlibrium. Does not

happen.

How measure risk aversion?

• Natural candidate: −U ′′(y).

• Varies with the argument, e.g., high y may give lower −U ′′(y).

• Is U() twice differentiable? Assume yes.

• But: The magnitude −U ′′(y) is not preserved if c1U() + c0

replaces U().

• Use instead:

◦ −U ′′(y)/U ′(y) measures absolute risk aversion.

◦ −U ′′(y)y/U ′(y) measures relative risk aversion.

• In general, these also vary with the argument, y.
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Arrow-Pratt measures of risk aversion

• For small risks: RA(y) ≡ −U ′′(y)/U ′(y) meaures how much

compensation a person demands for taking the risk. Called the

Arrow-Pratt measure of absolute risk aversion.

• RR(y) ≡ −U ′′(y) · y/U ′(y) is called the Arrow-Pratt measure

of relative risk aversion.

• Consider the following case (somewhat more general than D&D,

sect. 3.3.1):

– The wealth Y is non-stochastic.

– A lottery Z̃ has expectation E(Z̃) = 0.

• For a person with utility function U() and inital wealth Y ,

define the risk premium Π associated with the lottery Z̃ by

E[U(Y + Z̃)] = U(Y − Π).

• Will show the relation between Π and absolute risk aversion.
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Risk premium is proportional to risk aversion

(The result holds approximately, for small lotteries.)

E[U(Y + Z̃)] = U(Y − Π).

Take quadratic approximations (second-order Taylor series).

LHS:

U(Y + z) ≈ U(Y ) + zU ′(Y ) +
1

2
z2U ′′(Y )

which implies

E[U(Y + Z̃]) ≈ U(Y ) +
1

2
E(Z̃2)U ′′(Y ).

RHS:

U(Y − Π) ≈ U(Y ) − ΠU ′(Y ) +
1

2
Π2U ′′(Y ).

Assume last term is very small. Let σ2
z ≡ var(Z̃). Then:

1

2
σ2

zU
′′(Y ) ≈ −ΠU ′(Y )

which implies

Π ≈ −U ′′(Y )

U ′(Y )
· 1

2
σ2

z .
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The U function: Forms which are often used

• Some theoretical results can be derived without specifying form

of U .

• Other results hold for specific classes of U functions.

• Constant absolute risk aversion (CARA) holds for U(y) ≡
−e−ay, with RA(y) = a.

• Constant relative risk aversion (CRRA) holds for U(y) ≡
1

1−gy
1−g, with RR(y) = g.

• (Exercise: Verify these two claims. (a, g are constants.) Deter-

mine what are the permissible ranges for y, a and g, given that

functions should be well defined, increasing, and concave.)

• Essentially, these are the only functions with CARA and CRRA,

respectively, apart from CRRA with RR(y) = 1.

• (Any constant can be added to the functions, and any positive

constant can be multiplied with them.)

• RR(y) ≡ 1 is obtained with U(y) ≡ ln(y).

• Another much used form: U(y) = −ay2 + by + c, quadratic

utility. Easy for calculations, U ′ linear.

• (What are permissible ranges, given that U should be concave?

Hint: There is a minus sign in front of a.)

• Quadratic U has increasing RA(y) (Verify!), perhaps less rea-

sonable.

• (What happens for this U function when y > b/2a? Is this

reasonable?)
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