- Health (H) a resource, a "good thing"
 - direct utility in consumption $u'_H > 0$
 - increase production opportunities
 - higher productivity in work, e.g. more energy
 - fewer days sick (more healthy time)
 - In the Grossman model, there is only the latter effect.
- Health (H) a resource, a "good thing"
 - direct utility in consumption
 - increase production opportunities
 - higher productivity in work, e.g. more energy
 - fewer days sick (more healthy time)
- Health capital
 - The stock of health (H) gives utility and/or production opportunities. Health lasts over several periods, but time wears (depreciation).
 - Measures to improve health investments in health

The Grossman model

- The application of consumption (and investment) theory to the analysis of individual health.
- Health, the result of rational choice.
- Demand for health *care* is derived from a (rational) demand for health.
- Health capital
- Health brings direct utility, and increases production/earning opportunities.
- The individual is not only a consumer, but a **producer** of own health.

Note: Symbols are the same as in Grossman, chapter 7 in Handbook.

The derivation of the user cost of health

Then it is convenient to look at the optimal health stock in period t (H_t) rather than the gross investments.

The relation between H_t and $I_1, ..., I_n$:

$$I_{t-1} = H_t - (1 - \delta_{t-1}) H_{t-1},$$

$$I_t = H_{t+1} - (1 - \delta_t) H_t$$

while H_t does not enter in the expression for I_{t-j} , for $j \neq 0, 1$. That is, $\partial I_{t-1}/\partial H_t = 1$, and $\partial I_t/\partial H_t = -(1 - \delta_t)$ (and $\partial I_{t-j}/\partial H_t = 0$ for $j \neq 0, 1$).

$$\partial L_t / \partial H_t = \lambda \frac{1}{(1+r)^{t-1}} \left(\underbrace{-\underbrace{P_{t-1} \frac{\partial M_{t-1}}{\partial I_{t-1}}}_{\pi_{t-1}} \frac{\partial I_{t-1}}{\partial H_t}}_{=1} \right) + \\ + uh_t G_t + \lambda \frac{1}{(1+r)^t} \left(G_t W_t - \underbrace{P_t \frac{\partial M_t}{\partial I_t}}_{\pi_t} \underbrace{\frac{\partial I_t}{\partial H_t}}_{=-(1-\delta_t)} \right) = 0$$
$$\frac{\lambda}{(1+r)^{t-1}} \pi_{t-1} = uh_t G_t + \frac{\lambda}{(1+r)^t} \left(G_t W_t + \pi_t \left(1-\delta_t\right) \right)$$

multiply by $(1+r)^t / \lambda$ and rearrange right hand side (RHS):

$$\pi_{t-1} (1+r) = G_t W_t + \frac{uh_t}{\lambda} G_t (1+r)^t + \pi_t (1-\delta_t)$$
$$\pi_{t-1} (1+r) - \pi_t (1-\delta_t) = G_t W_t + \frac{uh_t}{\lambda} G_t (1+r)^t$$

Rearrangeing the LHS: $\pi_{t-1} (1+r) - \pi_t (1-\delta_t) = \pi_{t-1} \left(1+r - \frac{\pi_t}{\pi_{t-1}} + \frac{\pi_t}{\pi_{t-1}} \delta_t\right) = \pi_{t-1} \left(\frac{\pi_{t-1}}{\pi_{t-1}} + r - \frac{\pi_t}{\pi_{t-1}} + \frac{\pi_t}{\pi_{t-1}} \delta_t\right) = \pi_{t-1} \left(r - \left(\frac{\pi_t}{\pi_{t-1}} - \frac{\pi_{t-1}}{\pi_{t-1}}\right) + \frac{\pi_t}{\pi_{t-1}} \delta_t\right) = \pi_{t-1} \left(r - \tilde{\pi}_{t-1} + \frac{\pi_t}{\pi_{t-1}} \delta_t\right),$ where $\tilde{\pi}_{t-1} = \frac{\pi_t - \pi_{t-1}}{\pi_{t-1}}$. Grossman assumes that $\delta \tilde{\pi}_{t-1}$ is very close to zero, then $\frac{\pi_t}{\pi_{t-1}} \delta_t \approx \delta_t$, and we arrive at equation (11):

$$\pi_{t-1}\left(r - \widetilde{\pi}_{t-1} + \delta_t\right) = G_t W_t + G_t \frac{uh_t}{\lambda} \left(1 + r\right)^t \tag{11}$$

RHS: The gain from a marginal increase in health stock in period t.

The LHS: The cost of a marginal increase in ${\cal H}_t$ - can be thought of as a user cost of health capital.

In the next lecture, we will interpret this condition, and use the equation for graphical analysis I will place some notes on the course web site before that lecture, and no later than Monday the 14th in the morning.

Kari