## Note on optimal income tax rate in the top income bracket.

Suppose that the marginal tax rate in the top income bracket beyond the income level $\bar{Z}$ is set equal to $\tau$. Let the average income in the bracket be $Z$ and let $N$ be the number of taxpayers in this interval. Define
$e=\frac{d Z}{d(1-\tau)} \frac{1-\tau}{Z}=-\frac{d Z}{d \tau} \frac{1-\tau}{Z}$
$\frac{d Z}{d \tau}=-\frac{Z}{1-\tau} e$
Let $g$ be the average welfare weight assigned to the taxpayers in the top bracket, where $g$ is measured in terms of government revenue.

Increase $\tau$ by $d \tau$. The increase in the taxpayments in the top bracket neglecting behavioural changes is then $(Z-\bar{Z}) d \tau N$. The welfare effect of transferring this tax payment from the taxpayers to the government is then $(1-g)(Z-\bar{Z}) d \tau N$.The behavioural effect on tax revenue is
$\frac{d Z}{d \tau} N \tau d \tau=-\frac{Z}{1-\tau} e N \tau d \tau=-(Z-\bar{Z}) \frac{\tau}{1-\tau} e N \frac{Z}{Z-\bar{Z}} d \tau=-(Z-\bar{Z}) \frac{\tau}{1-\tau} e a N d \tau$
where by definition $a=\frac{Z}{Z-\bar{Z}}$.
The overall welfare effect is then

$$
\begin{aligned}
& (1-g)(Z-\bar{Z}) d \tau N-(Z-\bar{Z}) \frac{\tau}{1-\tau} e a N d \tau \\
& =(Z-\bar{Z}) d \tau N\left[1-g-e a \frac{\tau}{1-\tau}\right]
\end{aligned}
$$

The first order condition for the optimal value of $\tau$ is then
$(Z-\bar{Z}) d \tau N\left[1-g-e a \frac{\tau}{1-\tau}\right]=0$, that is,
$1-g-e a \frac{\tau}{1-\tau}=0$
Then $\tau=\frac{1-g}{1-g+a e}$

