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1 Introduction

This note presents a new model of conservation and derives the contract preferred by a third

party that benefits from conservation. We also show how the contract both influences, and

should be influenced by, the countries’political regimes and state capacities.

Payments for environmental services (PES) are important in many situations, and the

resource in our model could be fossil fuels or land use quite generally, but our analysis is

motivated in particular by deforestation in the tropics and the emergence of contracts on

reducing emissions from deforestation and forest degradation (REDD).

Deforestation in the tropics is an immensely important problem. The cumulative effect

of deforestation amounts to about one quarter of anthropogenic greenhouse gas emissions,

which generate global warming. The annual contribution from deforestation to CO2 emissions

is around ten percent, and the percentage is even higher for other greenhouse gases. Sadly,

tropical forest loss has been increasing at an average rate of 2101 km2 each year since 2000.

In addition to the effect on global warming, deforestation leads to huge losses in biodiversity.

The negative externalities of deforestation amount to $2-4.5 trillion a year.

However, estimates suggest that deforestation could be halved at a cost of $21-35 billion

per year, or reduced by 20-30 percent at a price at $10/tCO2. Third parties are therefore

interested in conservation. With the help of donor countries (in particular, Norway, Germany,

and Japan), the World Bank and the United Nations are already offering financial incentives

to reduce deforestation in a number of countries. Conservation contracts are favored by

economists who view them as the natural Coasian solution, and they are also likely to be an

important part of future climate change policies and treaties.
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It is therefore essential to understand how conservation contracts should be designed.

However, there is little theory that can guide real-world contract designers. A useful theory

must take several facts into account. First, the causes of deforestation differ across regions:

while local governments sell logging concessions in some countries, other countries fight illegal

logging for timber or the burning of the forest for agriculture. Second, markets for timber

and agricultural products are integrated and conservation in one region can lead to increased

deforestation elsewhere: for conservation programs in the U.S. west, the leakage rate (i.e.,

the increased deforestation elsewhere per unit conserved in the west) was 43 percent at the

regional level, 58 percent at the national level, and 84 percent at the continental level; for

the 1987-2006 conservation program in Vietnam, the leakage rate was 23 percent, mostly

due to increased logging in neighboring Cambodia and Laos. The presence of leakage is not

surprising: conservation reduces the supply of forest products, and the price thus increases; a

higher price increases deforestation and the cost of protection elsewhere.

As a third fact, the political regime seems to play an important, but puzzling, role. Decen-

tralization of forest management has reduced deforestation in some regions, like the Himalayas.

The reverse effect has been documented in other places, like Indonesia.

Despite all these differences, contracts tend to be similar across countries, and targeted

mainly at the national governments. Norway, for example, recently declined to contract with

the region Madre de Dios in Peru and it stated that it would only contract at the national

level.

These facts and claims raise a number of important questions. How can we explain the

inconsistent effect of the political regime on conservation? What is the optimal conservation

contract, and how does it depend on state capacities or the driver of deforestation? Is it wise

to contract with central governments only, or can local contracts be more effective? Can the

existence of conservation contracts actually influence regime change, and when would that be

beneficial and increase conservation?

The purpose of this note (Sections 2-3) is to provide a tractable model that can address

the questions above. In the model, each country or district may benefit from extracting its

resource, but the price of the harvest is reduced by the aggregate supply. To protect the

remaining part of the resource, the monitoring effort must ensure that the expected penalty is

at least as large as the harvest price motivating illegal logging. Thus, a district may want to

limit the amount that is protected, and let some of it be harvested and offered to the market,

since this reduces the price and thus the monitoring cost on the part that is to be protected.

The model can explain the inconsistent evidence regarding the effect of the political regime.

Suppose districts are "strong" in that extraction is sales-driven and motivated mainly by the
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profit that can be earned by the districts. In this case, a district benefits if the neighbors

conserve since that reduces their supply and the harvest price (and profit) increases. The

positive (pecuniary) externality from conservation would be internalized by a central gov-

ernment, so centralizing authority will increase conservation. Alternatively, suppose logging

is illegal or districts are "weak" in that they are unable to capture much of the profit, and

they find it expensive to protect the resource. In that case, a district loses when neighbors

conserve, since this increases the price and the pressure on the resource, and thus also the

monitoring cost when the resource is protected. This negative externality implies that when

authority is centralized, conservation declines. Consistent with our theory, countries in which

decentralization reduced deforestation has been referred to as weak: in Nepal, "the Forest De-

partment was poorly staffed and thus unable to implement and enforce the national policies,

and deforestation increased in the 1960s and 1970s". In Indonesia, where decentralization

increased deforestation, the state is stronger: "Deforestation in Indonesia is largely driven by

the expansion of profitable and legally sanctioned oil palm and timber plantations and logging

operations", according to some scholars.

A second purpose of this note (Section 4) is to derive the optimal conservation contract.

If there is a single district, a simple contract (similar to a Pigou subsidy) implements the first

best, regardless of the other parameters in the model. This finding, in isolation, supports

today’s use of contracts that are linear in the amount of avoided deforestation. With multiple

districts, however, one district finds it optimal to extract more when the neighbors conserve

or sign conservation contracts: the resulting higher price makes it profitable to extract if the

district is strong, and expensive to protect if the district is weak. This leakage makes a contract

less effective, and the optimal contract is weaker. Furthermore, contracting with one district

generates externalities on the others’outside option. The donor cannot exploit this externality

and the equilibrium contracts are too weak, leading to too much extraction, when districts are

strong and the externality positive. When the districts are weak and the externality negative,

however, there is too much conservation in equilibrium, since the donor takes advantage of

the negative externality on the other districts for each conservation contract that is offered.

2 A Theory of Conservation

This section presents a model of conservation and resource extraction in which there are many

districts and a common market for the harvest. The framework is general in that the resource

can be any kind of resource (for example, oil or land), the harvest can be timber or agricultural

products, and the districts can be countries or villages. To fix ideas, however, we refer to the
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resource as forest.

To motivate the framework we start by sequentially presenting two alternative models of

conservation before we combine them. In both cases there is a regional market with n ≥ 1

players, or districts, and xi is the extraction level in district i ∈ N = {1, ..., n}. The xi’s are

decided on simultaneously and the aggregate harvest, x =
∑

i∈N xi, is sold on the common

market. The larger is x, the smaller is the price. In the simplest possible setting, a linear

demand curve can be derived from quadratic utility functions:

p = p− ax, (1)

where p and a are positive constants and p is the equilibrium price.

A sales-driven model. If districts are motivated by the profit generated by the sales,

district i’s payoff may be represented by bpxi − vixi, where b is the benefit of profit, p is the

price for the harvest, and vi is district i’s marginal opportunity value when losing the forest.

For example, vi may represent the environmental benefits which the forest provides to i or

the tax or lost transfer which i experiences from more extraction. In Section 4, we will let

vi ≡ v + ti, where ti is a tax or a transfer.

A protection-driven model. While the sales-driven model is standard, our protection-

driven model is new. We now consider a setting in which districts do not extract to sell,

but where they try to prevent illegal extraction. If protection is diffi cult, one must take into

account that an illegal logger earns the price p by extracting a unit of the forest. This profit

must be compared to the expected penalty, θ, which one faces when logging on that unit of

the forest. The enforcement is preventive if and only if the expected penalty is larger than

the benefit:

θ ≥ p. (2)

We let districts set their expected penalties in advance in order to discourage extraction. In

principle, the expected penalty can be increased by a larger fine or penalty, but there is a

limit to how much the fine can be increased in economies with limited liabilities. To raise the

expected penalty further, one must increase the monitoring probability, and this is costly.1

We let c > 0 denote the cost of increasing monitoring enough to increase the expected penalty

by one unit. Thus, if (2) holds, it will bind: there is no reason to monitor so much that (2)

holds with strict inequality. Further, if (2) does not hold, then θ = 0: if monitoring is not

preventing logging, there is no reason to monitor at all. This implies that for each unit of the

1If π is the probability of being caught, while w is the largest possible penalty (for example, the wealth of
an illegal logger), then monitoring requires π ≥ p/w.
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forest, either the district protects the unit and ensures that (2) binds, or the district does not

protect at all, and that unit of the forest will be cut.

District i has a large forest or resource stock Xi, and it is allowed to monitor each unit

with a different intensity. Since the optimal monitoring intensity for each unit ensures that

the expected penalty is either p or 0, it follows that a part of the forest will be protected

and conserved, perhaps as a national park, while the remaining part will not be suffi ciently

protected and thus will eventually be cut. Since xi denotes the extraction level in district i,

such that Xi − xi is the size of the forest that is conserved, then i’s payoff is −cp (Xi − xi)−

vixi, since θ = p for the part (Xi − xi) that is conserved.2 The model thus suggests that

conservation policies will be "place-based" (for example, restricted to geographically limited

but protected national parks), as seems to be the case in Indonesia.

The combined model. More generally, district i may benefit by the part of the resource

that is extracted and sold, xi, at the same time that it finds it expensive to protect the

remaining part, Xi − xi. When the arguments above are combined, the utility of district i

becomes:

ui = bpxi − cp (Xi − xi)− vixi. (3)

Below we formally define districts as "strong" if they benefit a lot from the sale (b is

large) while finding enforcement inexpensive (c is small). We will define districts as "weak" if,

instead, b is small while c is large. This terminology is consistent with the literature on state

capacity, discussed in the Introduction.

It will be convenient to assume that the aggregate resource stock is large enough to serve

the entire market:

p− aX < 0, where X ≡
∑
i∈N

Xi.

Remark 1: Alternative interpretations and generalizations. There are several

alternative interpretations of the combined model such as it is summarized in (3). First, even

if all extraction is illegal, a district may have some concern for the welfare of the loggers, in

particular if they are poor and/or citizens of the district. Parameter b may then represent

this concern. Alternatively, parameter b may reflect the probability that the government in a

district captures the profit from the illegal loggers, even in the areas where the forest is not

2To be precise, let Si be i’s forest stock of size Xi, and let θs be the expected penalty when logging unit
s ∈ Si. If the forest units are divisible then i’s payoff is

ui = −c
∫
Si

θsds− vi
∫
Si

1sds,

where 1s = 1 if θs < p but 1s = 0 if θs ≥ p. Since there will be a corner solution for the optimal θs, ui can be
written as −cp (Xi − xi)− vixi.
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protected.

The model is simple and can easily be generalized in a number of ways. For example, one

can allow the districts (or the donor, introduced in Section 4) to take into account some of the

consumer surplus: this will merely make the analysis messier without altering the conclusions

qualitatively. Since the sales are exported, in reality, it is reasonable that districts will not

take consumer surplus into account.

Furthermore, note that we have linked the districts by assuming that the harvest is sold

at a common downstream market, but we could equally well assume that districts hire labor

or need inputs from a common upstream market. To see this, suppose that the price of the

harvest is fixed at p̂, and consider the wage cost of the labor needed to extract. If the labor

supply curve is linear in total supply, and loggers are mobile across districts, then we may

write the wage as ŵ + ax, where ŵ is a constant and a > 0 is the slope of the labor supply

curve. Defining p ≡ p̂ + ŵ, we can write this model as (1)-(3). It is thus equivalent to the

model described above.

Remark 2: Nonpecuniary externalities. Without changing the analysis, we can easily

allow for cross-externalities such that district i loses ṽ−i when the other districts extract. To

see that our model already captures this case, suppose that i’s true payoff is:

ũi = bpxi − cp
(
X̃i − xi

)
− ṽixi − ṽ−i

∑
j∈N\i

xj.

We can then write the payoff as (3) if we simply define ui ≡ ũi+pṽ−i/a while vi ≡ ṽi− ṽ−i and

Xi ≡ X̃i− ṽ−i/ca. Thus, a larger cross-externality can be captured by considering a reduction

in vi and Xi in the model described above.

3 Conservation and Political Regimes

Based on the combined model above, in which resource extraction can be sales-driven or

protection-driven, this section discusses the equilibrium amount of extraction and conserva-

tion. In particular, we will focus on how equilibrium extraction depends on whether districts

are weak or strong and the number of districts; discuss when one district benefits or loses if

other districts conserve more; and investigate the effect of political centralization.

3.1 The Equilibrium

Let X =
∑

i∈N Xi be the total size of the resource, while v =
∑

i∈N vi/n is the average vi.

Given (1), it is straightforward to derive a district’s downward-sloping best-response curve,
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coming from the first-order condition when deciding on xi:

xi =
p− ax−i

2a
+
caXi − vi
2a (b+ c)

.

When we solve for the equilibrium xi’s, we immediately arrive at the first proposition.

Proposition 1. In equilibrium, extraction is given by:

xi =
(b+ c) p+ acnXi − ac

∑
j∈N\iXj − nvi +

∑
j∈N\i vj

a (b+ c) (n+ 1)
⇒ (4)

x =
n

n+ 1

p

a
+

acX − nv
a (b+ c) (n+ 1)

⇒ (5)

p =
p

n+ 1
− acX − nv

(b+ c) (n+ 1)
. (6)

We will consider only interior solutions such that the right-hand side of (4) is assumed to

be positive but less than Xi for every i. If the right-hand side were instead negative (or larger

than Xi), the equilibrium would be xi = 0 (or xi = Xi).

Quite intuitively, extraction is smaller if the districts’opportunity values are high; and p

is then also high. However, aggregate extraction x is larger if demand is large (p/a large) or

the protection cost c is large. If the benefit of sales, b, is large, then extraction increases in the

typical sales-driven model (where c is large), but extraction is instead decreasing in b if the

protection cost is large: the reason is that when protection is expensive, extraction is so large

that the equilibrium price is low. If the weight on profit increases, equilibrium extraction will

be reduced to raise the price. Thus, if districts get stronger in that b increases, they extract

more if and only if they are also strong in that the protection cost is small.

∂x

∂b
> 0 if and only if c <

nv

aX
.

Note from (4) that a district i extracts more if its own resource stock is large, since a larger

x reduces p and thus the protection cost for the (large) remaining amount. However, if the

other districts are large or have small opportunity costs, then these other districts will extract

a lot and this reduces the price. When p is small, it is both less profitable to sell, and less

expensive for i to protect its resource. For both reasons, district i conserves more when Xj is

large or vj is small, for j 6= i.
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3.2 Pecuniary Externalities

Having solved for the equilibrium, we can be precise about when districts benefit from a high

price. When we take the partial derivative of (3) with respect to the endogenous p, and

substitute with (4), we get:

∂ui
∂p

=
ei

a (n+ 1)
where ei ≡ bp− c (aX − p)− nvi +

∑
j∈N\i

vj. (7)

With this, it is natural to define our labels in the following way.

Definition. Districts are strong and extraction is sales-driven if districts benefit from a high

price (i.e., ei > 0). Districts are weak and extraction is protection-driven if districts benefit

from a low price (i.e., ei < 0).

With this definition, districts are strong or, equivalently, extraction is sales-driven if ei > 0,

which holds not only when the benefit from profit (b) is large, but also when the market size

(p/a) is large compared to the total resource stock, and when protecting the resource has

small costs (c) or low value (vi). Note that we always have ei > 0 in the standard Cournot

model (where c = 0) when xi > 0. In contrast, we say that districts are weak and extraction is

protection-driven when districts benefit from a low price, since costly monitoring must increase

accordingly. This requires that ei < 0, which always holds in the model of illegal extraction

(when b = 0 and vi = vj).

Since the price is endogenous and increases when the neighbors conserve, ei can also be

referred to as the intra-district (pecuniary) externality from conservation.

Proposition 2. (i) District i benefits when another district conserves if and only if ei > 0:

∂ui
∂ (−xj)

=
ei

n+ 1
.

(ii) At the equilibrium conservation levels, we also have:

ui =
1

a (b+ c)

[(
ei

n+ 1

)2
− acviXi

]
⇒ (8)

sign
∂ui
∂p

= sign
∂ui
∂vj

= −sign ∂ui
∂Xj

= sign ei.. (9)

Equation (9) shows that the sign of ei is important when evaluating several changes. If the

market size p increases, the price is higher; a high price is beneficial in a sales-driven model

where ei > 0, but not when districts are weak and find protection costly. If a district j 6= i
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values conservation more, or if j’s resource stock is smaller, then j is expected to extract less.

District i’s utility will then increase if and only if ei > 0.

Remark 3: Nonpecuniary externalities. As mentioned in Remark 2, nonpecuniary

externalities can be accounted for by simply redefining some parameters. If i loses ṽ−i when

other districts extract, we still have ∂ui/∂p = ei/a (n+ 1) and the nonpecuniary externality

is simply added to ei, which can be written as:3

ei = bp− c
(
aX̃ − p

)
− nṽi +

∑
j∈N\i

ṽj + nṽ−i. (10)

3.3 The Political Regime

The sign of ei is also important for district i’s strategy. If ei > 0, district i prefers a high price,

and thus i has an incentive to keep the price high by strategically conserving more. If ei < 0,

district i has an incentive to extract more to keep the price and thus the pressure low.

These strategic incentives are particularly important for a large district which influences

the price more by a given change in xi/Xi. It thus follows that while large districts conserve

a larger fraction of their resource in a sales-driven model (in order to keep p high), they

conserves a smaller fraction when extraction is protection-driven (in order to reduce p and

thus the pressure on the resource). This can be seen by inserting (7) into (4) to get:

xi
Xi

=
ac

a (b+ c)
+

ei/Xi

a (b+ c) (n+ 1)
.

Corollary 1. A larger district i conserves a larger fraction of its resource if and only if

ei > 0:
∂xi/Xi

∂Xi

=
−ei/X2

i

a (b+ c) (n+ 1)
.

The effect of the number of districts, n, is equally ambiguous and interesting. In a sales-

driven model, it is well known from Cournot games that if the number of sellers increases,

then so does the aggregate quantity supplied, while the price declines. We should thus expect

∂x/∂n > 0 in a sales-driven model. With protection-driven extraction, however, districts

conserve less when they take into account the fact that the pressure on the resource weakens

as a consequence. It is for this reason that large districts conserve less. By inserting (7) into

3Just as in Remark 2, if X̃ is the actual forest size, ṽi is i’s actual cost of losing its forest while ṽ−i is i’s
direct loss when j cuts, then our analysis continues to hold if we define vi ≡ ṽi − ṽ−i and Xi ≡ X̃i − ṽ−i/ca.
By substituting these parameters into (7), we get (10).
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(5), we can see that ∂x/∂n < 0 if and only if e < 0:

x =
cX

b+ c
+

ne

a (b+ c) (n+ 1)
, where e ≡ 1

n

∑
i∈N

ei = (b+ c) p− acX − v. (11)

The number of districts is therefore important. If a set of districts centralizes authority,

we will assume that the forest stocks are pooled and the extraction rates are set to maximize

the sum of the merging districts’payoffs. Thus, the aggregate resource X remains unchanged,

while the number of relevant governments n declines. To isolate this effect, we assume b and

c stay unchanged after centralization.

Corollary 2. Fix X and v. Centralization (implying a smaller n) leads to more conservation

if districts are strong ( e > 0) but less if districts are weak ( e < 0).

The corollary holds whether it is only a couple of districts that centralize authority to a

common central authority, or all the n districts that centralize power to a single government.

If authority is centralized to a single central government, C, then n = 1 and (11) becomes:

xC =
cX

b+ c
+

e

2a (b+ c)
=
p (b+ c) + acX − v

2a (b+ c)
. (12)

4 Conservation Contracts

The previous section derived equilibrium conservation as a function of the parameters in the

model. In this section, we further assume that every district has a utility function that is linear

and additive in the transfer τ i ∈ <. We have already suggested that district i’s opportunity

cost of extraction, vi, may in part come from lost subsidies or a higher tax on extraction:

vi = v + ti, (13)

where ti ∈ < can represent an extraction tax, so that the transfer to i would be τ i = −tixi.

Since we now let v be common for the districts, the externality (when ti = 0) will be:

e ≡ (b+ c) p− acX − v.

Given (13), (4) shows that xi is a function of t = (t1, .., tn):

xi (t) =
e+ ac (n+ 1)Xi − tin+

∑
j 6=i tj

a (b+ c) (n+ 1)
. (14)
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Thus, ui can be written as a function of x(t) = (x1 (t) , ..., xn (t)). From equations (1)-(3):

u0i (x(t)) = bpxi (t)− cp (Xi − xi (t))− vxi (t) ,

where superscript 0 just indicates that the cost of ti is not taken into account in the definition

of u0i . With τ i = −tixi, i’s actual payoff is just as in (3):

u0i (x(t)) + τ i = bpxi (t)− cp (Xi − xi (t))− (v + ti)xi (t) .

In this section we study contracts between the districts and a principal or a "donor" D.

We assume that D benefits from conservation and that uD = −dx, where d > 0 measures the

damage D faces from the districts’extraction. Also D has a quasi-linear function for the payoff

uD + τD, where τD is the transfer to D. By budget balance, τD = −
∑

i∈N τ i. In the following,

we will derive (1) the first-best (Pareto-optimal) allocation as well as the equilibrium contract

between (2) D and a central government C and (3) D and m ≤ n districts.

4.1 The First Best

Since we have assumed transferable utilities and n+ 1 players, any Pareto optimal allocation

x = (x1, ..., xn) must maximize uD (x) +
∑

i∈N u
0
i (x). Pareto optimality cannot pin down the

transfers or even the allocation of xi’s when x is given and v is the same for every district,

but the Pareto-optimal x is unique.

Proposition 4. (i) The first-best extraction level is given by:

xFB =
cX

b+ c
− d− e

2a (b+ c)
. (15)

(ii) The first-best xFB is implemented by the decentralized equilibrium if and only if:∑
i∈N ti

n
= tFB ≡

(
n+ 1

2n

)
d+

(
n− 1

2n

)
e. (16)

Part (i) shows that the expression for xFB equals the expression for xC if simply v in (12)

is replaced by v+d. Part (ii) of the proposition follows from combining (5), (13), and (15). It

states that the first-best tax or (subsidy) rate tFB is a weighted average of the two externalities

e and d. To understand this, note that even when d = 0, ti > 0 is optimal if and only if other

districts benefit when i conserves more. This would be the case when districts are strong and

extraction sales-driven. When districts are weak and extraction protection-driven, then ti < 0
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would be optimal instead.

When decision-making power is centralized to a single authority, then n = 1 and the Pigou

tax is standard.

Corollary 4. Under centralization, the first-best is implemented simply by tC = d. Facing

tC = d, C will induce its districts to select xFB by, for example t = tFB.

The second part of the corollary is just pointing out that since C maximizes the sum of

the districts’payoffs, it will tax extraction according to (16) if just d is replaced by tC . We

thus have a formula for how C can implement its desired policy for any given tC :

t (tC) ≡
(
n+ 1

2n

)
tC +

(
n− 1

2n

)
e.

4.2 Contracts under Centralization

While Proposition 3 describes the first best, we now derive the equilibrium contract if D can

make a take-it-or-leave-it offer. We assume the extraction level is contractible so that the

transfer from D can be a function of x. Since there is a deterministic relationship between x

and the contract, it suffi ces to consider linear conservation contracts of the type observed in

reality (see the remark at the end of this section). If D contracts with C, this means:

τC = max {0, (xC − x) tC} ,

where xC is a baseline deforestation level. The contract, which consists of the pair (tC , xC),

implies that C receives tC dollars for every unit by which the actual extraction x is reduced

relative to the baseline level xC . If x ≥ xC , no payment is taking place. When x < xC , the

transfer can be written as τC = tCxC − tCx, with the last term being equivalent to a tax tC ,

while the first term is equivalent to a lump-sum payment.

If x < xC , then C’s payoff is u0C (xC (tC))+tC (xC − xC (tC)), where xC (tC) recognizes that

xC is a function of tC . This function is given by (12), taking into account that v = v + tC .

Note that xC is then not a function of the baseline xC , which confirms that the tCxC-part of

the transfer is like a lump sum.

Since D’s objective is to maximize

uD − tC · (xC − x) , (17)

D would prefer to reduce the total transfer τC by reducing the baseline xC . However, D must
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ensure that the following incentive constraint for C is satisfied:

u0C (xC (tC)) + tC · (xC − xC (tC)) ≥ u0C (x̂C)∀x̂C > xC . (ICC)

That is, C’s payoff in equilibrium cannot be smaller than what C could achieve by optimizing

as if there were no transfer. In equilibrium, xC will be reduced by D until (ICC) binds with

equality.

Proposition 5. When D contracts with C, the contract (tC , xC) is:

tC = d,

xC = xC (0)− d

4a (b+ c)
. (18)

Thus, the optimal rate tC = d is very simple and independent of the parameters in

the model, whether the country is weak or strong, or whether extraction is sales-driven or

protection-driven. To derive the result, just substitute (ICC) into (17), and note that D is

induced to maximize the sum uC + uD.

Corollary 5. When D contracts with C, the outcome is first best. C faces tC = d and induces

its districts to select xFB by setting the average tax equal to tFB.

The baseline xC will be set such that (ICC) binds and C is exactly indifferent between

choosing xC (tC) and xC (0). The indifference means that the benchmark xC will be strictly

smaller than the business-as-usual level xC (0), as illustrated by (18), since otherwise C would

strictly benefit from the contract. If xC were not dictated by D, but instead had to equal some

historical or business-as-usual level, then D would prefer some other tC 6= d, and the first best

would not be implemented. This result disproves the typical presumption that the reference

level should equal the business-as-usual level.

4.3 Contracts under Decentralization

We now return to the model in which n districts act noncooperatively when deciding on the

xi’s. As explained below, it suffi ces to consider actual conservation contracts of the form:

τ i = max {0, (xi − xi) ti} ,

where xi is the baseline for district i. Suppose D unilaterally designs the contract (ti, xi) for

every i ∈ M ⊆ N , where m = |M | ≤ n. Even if D would like to contract with all n districts,

13



this may be unfeasible for exogenous (or political) reasons.

Just as under centralization, D must ensure that a district is no worse off in equilibrium

where xi < xi than the district could be by ignoring the contract and picking any other

extraction level x̂i > xi:

u0i (x (t)) + ti · (xi − xi) ≥ u0i (x̂i, x−i (t))∀x̂i > xi. (ICi)

The problem for D is to select the m pairs (ti, xi) in order to maximize uD −
∑

i∈M ti ·

(xi − xi) subject to the m incentive constraints.

Proposition 6. Suppose D contracts with m ≤ n districts. The optimal contract for D is:

ti =
2

n+ 1
d, (19)

xi = xi (0) +
4m− 3 (n+ 1)

4a (b+ c) (n+ 1)
t.

Naturally, when there is only one district (m = n = 1), Proposition 6 coincides with

Proposition 5. With n > 1 districts, however, contracting with district i means that xi will

decrease but every other xj will increase: In fact, (14) shows that for every unit by which xi is

reduced, x is reduced by only 1/n units. This ratio makes it costly for D to reduce exctraction

when n is large, and the optimal contract is weakened. Since the ratio is independent of the

other parameters in the model, so is the rate t.

Similarly, xi will increase when D contracts with several other districts. Thus, the larger is

m, the larger must the baseline be for the contract to remain relevant. While contracts with i

increases j’s extraction level, the effect on the j’s payoffs will depend on the externality e. If

e is large, j benefits when D contracts with i 6= j; D is unable to cash in on this benefit, since

the contract with i increases j’s payoff also at the threat point when j ignores D’s contract.

It is thus intuitive that D will offer contracts to i that are too weak relative to the first best

when the externality e is large.

If instead e is small and negative, then j loses when D contracts with i. However, D does

not need to compensate j for this loss, since j loses also at the threat point and when j ignores

a contract offered by D. Thus, when logging is mainly illegal, D offers contract that are too

strong compare to the socially optimum.

Since the first-best t increases in e, while the equilibrium t does not, we get the following

corollary.

Corollary 6. At the equilibrium contracts, the conservation level is too large compared to the
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first best if and only if districts are weak ( e/d is small):

x < xFB ⇔
∑

i∈N ti

n
> tFB ⇔

e

d
< −(n+ 1)2 − 4m

n2 − 1
.

Remark 4: Contract linearity and robustness. The donor can do no better with more

general contracts (that are nonlinear or multilateral). Since there is a one-to-one mapping

between t and x, it is easy to see that (ICi) remains unchanged if D can use more general

contracts: If D wants to implement a particular x, it must offer each i ∈ M a transfer τ i (x)

that makes i weakly better off compared to selecting any other xi (leading to no transfer),

given x−i:

u0i (x (τ )) + τ i (x (τ )) ≥ u0i (x̂i, x−i (τ ))∀x̂i > xi.

However, with bilateral contracts there are multiple equilibria that can be avoided by

using multilateral contracts: If the other districts believed that i would ignore the contract

(by extracting xi > xi), the other districts would extract less and xi > xi would be strictly

preferred by i. If this equilibrium is better for i, then i would prefer to announce publicly that

it rejects the contract with D and that it will not accept any payments from D in the future.

If such a pledge were credible, then D would need to satisfy i’s participation constraints as

well as i’s incentive constraints.

5 Contracts with Local vs. Central Authorities

So far, we have assumed that the donor contracted with certain districts and governments,

and we took their numbers and authority levels to be exogenously given. In some cases, the

donor may be able to decide whether it wants to contract with a set of districts independently,

or whether it instead wants to contract with their common central government.

As a start, consider a subset L ⊆M containing l ≡ |L| districts. If these districts centralize

authority, then l, m, and n all decrease by the same number, denoted by ∆. If L centralizes to

a single government, then ∆ = l−1, but we do not require this. We assume that such a regime

change does not influence the forest areas over which D can contract. Hence, D contracts with

m−∆ governments after the regime change, while the number of districts without a contract

stays unchanged at n−m.

We say that L is "large" (relative to N) if:

εL ≡ 1− l

n+ 1
− l −∆

n−∆ + 1
< 0. (20)
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That is, for L to be large, it is necessary that L contains a majority of the decision-making

districts before centralization (l > (n+ 1) /2), and it is suffi cient that L contains a majority

after decentralization (l −∆ > (n−∆ + 1) /2). If L is not large, we say that L is "small."

Our first observation concerns the effect on conservation.

Proposition 7. If L ⊆ M centralizes, x decreases if and only if e/d is large or M is large,

i.e., if:
e

d
≥ 2εM = 2

(
1− m

n+ 1
− m−∆

n−∆ + 1

)
.

If M is large (say, m = n), then we know from the earlier intuition that centralization

reduces x when e/d is large. If M is small, however, a large number (n − m) of other dis-

tricts will increase x when M reduces x, and thus the condition becomes harder to satisfy.

Proposition 7 generalizes Proposition 3 (for the case in which there is no contract, d = 0).

We will now discuss when the donor would prefer contracting with a central government

rather than with local governments. If a central government C is already active and regulat-

ing the local governments, then C can always undo D’s offers to the districts; decentralized

contracts would then not be an option for D. If the central government is absent or passive,

however, then D may evaluate whether it should contract with the districts or instead propose

a contract to the union of some districts. The latter option may require central authorities to

be activated or created.

As we have already noted, when districts are strong and extraction sales-driven, then a

district benefits if the others conserve more, and thus also if the others are offered conservation

contracts. These positive externalities are internalized by a benevolent central government

maximizing the sum of utilities. When positive externalities are appreciated by the contracting

partner, D can extract more of the districts’surplus (by reducing the baseline). Thus, when

e is large, D benefits when authority is centralized.

If instead the externality e is small, as when districts are weak and extraction is protection-

driven, the argument is reversed. A district then experiences negative externalities when

others conserve or sign conservation contracts with D. Negative externalities will be taken

into account by central authorities, who will thus reject the contract unless it involves larger

transfers. In this case, therefore, D benefits from decentralized contracts. This holds even

when the first best requires centralization.

Proposition 8. Decentralized contracts are preferred by D if and only if e/d is small or M

is small:
e

d
≤ εM = 1− m

n+ 1
− m−∆

n−∆ + 1
.
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Figure 1: Even if centralization leads to the first best, the donor prefers decentralized contracts
when e and d are small (shaded area), while the districts prefer decentralization when e and
d are large (dotted area). In the colored dotted area, the regime change raises extraction by
more than the contracts reduce it. Lines are drawn for our two-district example.

The donor is more likely to prefer decentralized contracts when M is small relative to N ,

since the other districts will, as a consequence, extract less when e is large. This result also

implies that there is a unique number m that maximizes D’s payoff (i.e., the second-order

conditions w.r.t. m and ∆ hold).

A comparison to Proposition 7 is interesting. When M is large, 2εM < εM < 0. Thus,

when e/d ∈ (2εM , εM), D finds having decentralized contracts to be less expensive, even if

centralization would have increased conservation. When M is instead small, 0 < εM < 2εM .

In this case, when e/d ∈ (εM , 2εM), D finds having centralized contracts to be less expensive,

even if decentralization would have increased conservation. When e/d is outside these intervals,

D prefers the regime that maximizes conservation.

Corollary 7. (i) If M is large, D always prefers decentralized contracts if this reduces x, but

the converse is not true.

(ii) If M is small, D always prefers centralized contracts if this reduces x, but the converse is

not true.

Consider an example with two districts. Decentralized contracts are preferred by D in

the shaded area, where e/d < εM = −1/6 ≈ −0.17, even though decentralization reduces

conservation when e/d > 2εM = −1/3 (where the shaded area has downward-sloping lines).

By extending the model, one can also derive the districts’preferences. One could then show
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that the districts prefer decentralization of authorities, before D offers the contracts, only when

they are stronger and e/d ∈ (̂εL, εL) ≈ (−0.16, 5.5), i.e., in the dotted area. Furthermore,

one can show that when e/d ∈ (8/3, 5.5), which corresponds to the colored and dotted area,

the presence of D motivates the districts to decentralize and the accompanying increase in x

outweighs the effect of the contracts.

6 Some Conclusions and Policy Lessons

This note presents a simple model of deforestation. It allows for many districts and recognize

that since extracting some of the resource increases the harvest supply, it decreases the price

and the monitoring costs for the part that is to be conserved. The externality from one

district’s conservation on others can be positive or negative, depending on state capacities

and the size of the resource stock. The model can be used to study various types of resources

and alternative motivations for extractions, but it is motivated in particular by deforestation

in the tropics. The analysis generates several policy lessons.

First, decentralizing authority influences conservation. If districts are "strong" and ex-

traction is sales-driven, then districts extract too much since they do not internalize the effect

on other districts’profit. A transfer of authority from the local to the federal level will then

lead to more conservation and less extraction. If districts are "weak" and extraction is driven

by the high cost of protection, then districts might conserve too much since protection in one

district can increase the pressure to extract in neighboring districts. In this case, centralizing

authority will reduce conservation and increase extraction. These results may also help to

explain the mixed empirical evidence: as discussed in the Introduction, decentralization has

increased deforestation in Indonesia, while reducing it in other areas, such as the Himalayas.

Second, the optimal conservation contract depends on local institutions and the drivers

of extraction. Under centralization to a single government, simple Pigou-like contracts are

optimal and first best. With several independent districts, however, the equilibrium contract

can lead to too much conservation when districts are weak and too little when they are strong.

Finally, the model suggests that if logging is illegal, then it is less expensive to contract with

local districts, but with sales-driven deforestation, then centralized contracts are better.

Note that the benchmark results we have derived rely on a number of limiting assumptions.

In particular, ideally one should add a dynamic setting, the functional forms ought to be

generalized, parameters might be privately known, and the outcome may also be stochastic.
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7 Appendix: Proofs

Proof of Proposition 1.
Note that the first-order condition when maximizing (3) w.r.t. xi and subject to (1) gives:

xi =
p

a
+
caXi − vi
a (b+ c)

(21)

=
p− ax−i

2a
+
caXi − vi
2a (b+ c)

, (22)

if the right-hand side is in [0, Xi]. The second-order condition trivially holds. By summing
over the xi’s as given by (21) and combining that sum with (1), we get (5) and (6), and by
inserting (6) into (21), we get (4). Q.E.D.

Proof of Proposition 2.
(i) From (3) we immediately get (when j 6= i and using the Envelope theorem):

∂ui
∂xj

=
∂ui
∂p

∂p

∂xj
= −a [(b+ c)xi − cXi] = −

(b+ c) p− acX − vin+
∑

j 6=i vj

n+ 1
,

when we substitute in for (4). With (7), we can write ∂ui/∂xj = −ei/ (n+ 1).
(ii) When we combine (7) with (4) and (6), we get:

xi =
ei

a (b+ c) (n+ 1)
+

cXi

b+ c
and p =

ei
(b+ c) (n+ 1)

+
vi

b+ c
.

Thus, we can write (3) as:

ui ≡ xi ((b+ c) p− vi)− pcXi

=

(
ei

a (b+ c) (n+ 1)
+

cXi

b+ c

)
ei

n+ 1
−
(

ei
(b+ c) (n+ 1)

+
vi

b+ c

)
cXi,

which can be written as (8). Given (7), differentiating (8) gives Corollary 2. Q.E.D.

Proof of Proposition 3.
(i) Since uD (x)+

∑
i∈N u

0
i (x) = bpx−cp (X − x)−vx−dx, the f.o.c. when maximizing w.r.t.

x can be written as (15). The second-order condition trivially holds.
(ii) With (13), we can write (11) as

x =
ac

a (b+ c)
X +

ne−
∑

i ti
a (b+ c) (n+ 1)

. (23)

This x equals xFB if and only if (16) holds. Q.E.D.

Proof of Proposition 4.
For a given tC , D prefers to reduce xC as much as possible, so (ICC) will bind. Solving
(ICC) for (xC − x) tC and inserting that term into (17), we note that D’s objective is to
maximize −dxC (tC) + u0C (xC (tC)) − u0C (x̂C) = uD (xC (tC)) + u0C (xC (tC)) − u0C (x̂C). D is
thus maximizing the sum of payoffs (since −u0C (x̂C) is independent of tC), implying the same
outcome as in the first best: xC = xFB and tC = d.
To derive xC , note that we can rewrite a binding (ICC) to:

tCxC = u0C (x̂C)−
[
u0C (xC (tC))− tCxC

]
, (24)
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where both u0C (x̂C) and the bracket follow from (8), and with (7) and (13), ei is replaced by
e when C ignores the contract while otherwise ei = e− tC . Thus, we can write (24) as:

tCxC =
1

a (b+ c)

[
e2

4
− cavX − (e− tC)2

4
+ ca (v + tC)X

]
,

which can be rewritten as (18) when tC = d. Q.E.D.

Proof of Proposition 5.
The proof starts by deriving maxx̂i u

0
i (x̂i, x−i (t)). From (22) and (4), we find i’s optimal

response to x−i (t), if i decided to ignore the contract:

xIi =
p− ax−i (t)

2a
+
caXi − v
2a (b+ c)

= xi +
ti

2a (b+ c)
,

where xi is given by (14). This results in a price

pI = p− ti
2 (b+ c)

,

where p = p− a
∑

i xi (t). Thus,

u0i (x̂i, x−i (t)) =
[
(b+ c) pI − v

]
xIi − pIcXi

=

[
(b+ c)

(
p− ti

2 (b+ c)

)
− v
](

xi +
ti

2a (b+ c)

)
−
(
p− ti

2 (b+ c)

)
cXi

= u0i (x (t)) +

[
(b+ c)

(
p− ti

2 (b+ c)

)
− v
]

ti
2a (b+ c)

− ti
2
xi +

cXiti
2 (b+ c)

= u0i (x (t)) +
t2i

4a (b+ c)
, (25)

when we use (21). With this, (ICi) boils down to

τ i ≥ u0i (x̂i, x−i (t))− u0i (x (t)) =
t2i

4a (b+ c)
. (26)

(i) When only the IC’s bind, D maximizes

uD +
∑
i∈M

[
u0i (x (t))− u0i (x̂i, x−i (t))

]
= −d

[
ac

a (b+ c)
X +

ne−
∑

i ti
a (b+ c) (n+ 1)

]
−
∑
i∈M

t2i
4a (b+ c)

.

For each ti, i ∈M , the first-order condition becomes

d

a (b+ c) (n+ 1)
− ti

2a (b+ c)
= 0,

giving (i). The second-order condition trivially holds.
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To find xICi , rewrite a binding (26) to:

τ i = ti (xi − xi) =
t2i

4a (b+ c)
⇔

xi =
ti

4a (b+ c)
+ xi (0)−

tin−
∑

j 6=i tj

a (b+ c) (n+ 1)
= xi (0) +

4m− 3 (n+ 1)

4a (b+ c) (n+ 1)
t

= xIi −
ti

4a (b+ c)
=
xi + xIi

2
.

(ii) Note that (PCi) can be rewritten as:

tixi ≥ u0i (x (t−i))−
[
u0i (x (t))− tixi

]
where both u0i (x (t−i)) and the bracket follow from (8), so:

tixi ≥
1

a (b+ c)

[(
e+

∑
j 6=i tj

n+ 1

)2
− cavXi

]

− 1

a (b+ c)

[(
e− nti +

∑
j 6=i tj

n+ 1

)2
− ca (v + ti)Xi

]

=
ti

a (b+ c)

2n
(
e+

∑
j 6=i tj

)
− n2ti

(n+ 1)2
+ caXi

 . (27)

Thus, D’s problem becomes to maximize:

uD +
∑
i∈M

[
u0i (x (t))− u0i (x (t−i))

]
= −dx+

∑
i∈M

[xiti − tixi]

= −dx+
∑
i∈M

xiti −
∑
i∈M

ti
a (b+ c)

2n
(
e+

∑
j 6=i tj

)
− n2ti

(n+ 1)2
+ caXi

 .
Since xi is given by (14) and x by (23), the f.o.c. w.r.t. ti becomes:

0 =
d

a (b+ c) (n+ 1)
+

(b+ c) p+ ac (n+ 1)Xi − acX − v − 2tin+
∑

j 6=i tj

a (b+ c) (n+ 1)

+
1

a (b+ c) (n+ 1)

∑
j∈M\i

tj −
1

a (b+ c)

2n
(
e+

∑
j 6=i tj

)
− 2n2ti

(n+ 1)2
+ caXi


−
∑
j∈M\i

tj
a (b+ c)

2n

(n+ 1)2
.

Note that Xi disappears from the f.o.c., so we get the same ti = tPC for every i ∈ M . The
f.o.c. thus simplifies to:

0 = (n+ 1) d+ (n+ 1) e− tPC (2n−m+ 1) (n+ 1)

+ (m− 1) (n+ 1) tPC − [2ne− 2n (n−m+ 1) tPC ]− 2n (m− 1) tPC

= (n+ 1) d− (n− 1) e− 2 [(n−m+ 1) + n (m− 1)] tPC ,
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which reveals that the second-order condition clearly holds. By solving for t, we get:

tPC =
(n+ 1) d− (n− 1) e

2 [(n−m+ 1) + n (m− 1)]
=

(n+ 1) d− (n− 1) e

2 + 2m (n− 1)
.

We can find xi by inserting tPC and xi,0 from (14) into (27):

xPCi = xi (0) +
1

a (b+ c)

[
n− 1

(n+ 1)2
e+

2n (m− 1)− n2

(n+ 1)2
t

]
.

(iii) Note that (IC) is harder to satisfy than (PC) if xICi > xPCi . A simple comparison
completes the proof. Q.E.D.

Proof of Proposition 6.
(i) It is easy to see that (ICi) remains unchanged if D can use more general contracts: If D
wants to implement a particular vector x, it must offer each i ∈ M a transfer τ i (x) that
makes i weakly better off compared to selecting any other xi (leading to a different transfer).
To discourage such deviations, D should ensure that i receives no transfer if i deviates from
the implemented plan. Thus, the incentive constraint is

u0i (x (τ )) + τ i (x (τ )) ≥ u0i (x̂i, x−i (τ ))∀x̂i > xi,

just as before.
(ii) Next, note that the participation constraint can always be weakened to make it weaker
than the incentive constraint. To see this, write the participation constraint as:

u0i (x (τ )) + τ i (x (τ )) ≥ u0i (x (τ−i)) ,

and note that it is always possible to select τ (x) in such a way that x−i (τ−i) = x−i (τ ), that
is, such that no j 6= i will change xj if i announces that i will not accept transfers from D.
This is achieved, for example, if j receives transfers only when xj = xj (τ ). Of course, it may
be that the transfer τ j must be larger when i rejects the contract and thus selects xi 6= xi (τ ),
but this larger transfer will not have to be paid by D in equilibrium.
(iii) Thus, only the incentive constraint will bind when τ (x) can be a general function. In-
serting the binding incentive constraints into D’s objective function gives, as before, that D
selects τ or, equivalently, x, to maximize:

uD +
∑
i∈M

u0i (x)− u0i (x̃i (x−i) , x−i) ,

where x̃i (x−i) = arg maxxi u
0
i (xi, x−i). This is the same problem as in the proof of Proposition

5(i), and the outcome for xi and τ are thus also identical. Q.E.D.

Proof of Proposition 7.
From now on we frequently use y ≡ e/d. The following proof is more general than needed,
since we allow for a regime change that changes q ≡ n−m as well as m (to q′ and m′), even
though the text above does not consider changes in q. When inserting (19) into (11), we get:

x =
c

b+ c
X +

e

a (b+ c)
− e+ 2dm/ (n+ 1)

a (b+ c) (n+ 1)
.
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Thus, with decentralization, x increases if:

0 >
e (n′ − n)

(n+ 1) (n′ + 1)
− 2d

m′ (n+ 1)2 −m (n′ + 1)2

(n+ 1)2 (n′ + 1)2
⇔

y < 2
m′ (n+ 1)2 −m (n′ + 1)2

(n+ 1) (n′ + 1) (n′ − n)
=

2

(n′ − n)

[
m′
(

1− n′ − n
n′ + 1

)
−m

(
1 +

n′ − n
n+ 1

)]
= 2

[
m′ −m
n′ − n −

m′

n′ + 1
− m

n+ 1

]
= 2

[
1− q′ − q

n′ − n −
m′

n′ + 1
− m

n+ 1

]
.

Setting q = q′ and ∆ = m′ −m = n′ − n completes the proof. Q.E.D.

Proof of Proposition 8.
With (23) and (26) we can write D’s payoff as a function of m:

−dx−
∑
i∈M

t2i
4a (b+ c)

= −d
(

ac

a (b+ c)
X +

ne−m
(

2
n+1

d
)

a (b+ c) (n+ 1)

)
−
m
(

2
n+1

d
)2

4a (b+ c)

=
d2

a (b+ c)

m

(m+ q + 1)2
− dcX

b+ c
− de

a (b+ c)

m+ q

m+ q + 1
.

By comparison, m′ > m increases D’s payoff if

m′

(m′ + q + 1)2
− y m′ + q

m′ + q + 1
>

m

(m+ q + 1)2
− y m+ q

m+ q + 1
⇔

y < 1− m′

(m′ + q + 1)
− m

(m+ q + 1)
. Q.E.D.
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