
Solutions to part 1: Pollution in LICs 

Most of this is straightforward. I will assume that the VSL and QALY concepts are known, so 

I will not elaborate too much here.  

Valuation using VSL = value of statistical life is based on standard loss values per person 

dying as a result of the project. VSL values are usually found from either a) original valuation 

studies using either revealed preferences or stated preferences, or b) value transfer from other 

studies done with the same objective.  

Valuation using QALY = quality-adjusted life years implies that a standard value is set to 

extending life in full health by one year, and that the annual value is adjusted down by 

specific factors for persons with particular types of sickness or inhibitions.  

The most specific and perhaps tricky problem here is to distinguish between air pollution and 

water pollution projects in LICs. The most important distinction, in terms of value, is that 

while projects to reduce air pollution mostly save persons who are already relatively old 

and/or sick, projects to reduce water pollution would mostly save children. For a given 

number of lives saved from each of these projects, the VSL value would be the same for both 

projects. The QALY value would however be much higher for the project reducing water 

pollution (since children, mostly saved by the water pollution project, have much longer 

remaining lifetime than old people, mostly saved by the air pollution project). 

 

Solutions to part 2: Urban traffic in LICs 

1. The most important types of externality costs in road transport are carbon emissions; 

local tailpipe pollution emissions and emissions due to particles constituting worsened 

air quality; noise; road congestion; road accidents; road wear. All these types of 

externalities are consequential for all types of vehicles. Exceptions are road wear for 

smaller vehicles (insignificant for vehicles other than large trucks); and local tailpipe 

emissions and possibly noise (and carbon emissions when the electricity is not 

produced from fossil fuels) for electric vehicles. 

 

2. Fuel-related externalities: Carbon emissions; and local tailpipe emissions. Distance-

related externalities: Congestion; accidents; and road wear. A fuel tax is a good 

instrument to correct for the first type of externality. A distance-related tax (thus, a tax 

on the amount of driving) is a better instrument to control for the second type. This tax 

must ideally be variable to be able to correct for the large temporal variation in 

congestion externalities, which tend to dominate at times when congestion is high.  

 

3. Here, I have been using a note by Ian Parry which is given at the end of this document. 

I do not expect students to know precisely the formulas in this document, only the 

basic argument, that he marginal congestion cost when congestion is serious, is 

generally adds a multiple of the average congestion cost (the cost for the vehicle we 

consider), due to congestion imposed on other vehicles. This multiple is usually, 

according to Parry, between 2.5 and 5. I have discussed this note very recently, and it 

is included in the published lecture notes.  

 



4. Costs of road accidents are in terms of a) mortality; b) morbidity, hospital time, related 

lost work time etc.; c) material costs including damaged vehicles and other property 

that may be hit, etc. Estimation of mortality and morbidity costs would be done in 

basically the same way as for pollution damages. One difference is however that 

persons dying or being injured from road accidents are usually younger and healthier 

than persons dying from air pollution. This implies that, at least when using a QALY 

measure of mortality damage cost (which I have also talked about at the lectures), the 

damage would be relatively greater from road accidents relative to pollution damage, 

for a given mortality (and morbidity) impact. What should be considered as externality 

costs will also vary with type of accident. For accidents of type a), it is standard to not 

consider the costs as external but in principle internalized by the driver (although one 

should be able to count externality costs when a driver has passengers who may be 

harmed and who have no direct influence on the driving activity; or costs on oneself 

that will be borne by society, such as hospital or disability costs borne by the social 

security system). For accidents of type b), given one person in each vehicle, a standard 

calculation is to consider half the damages as internalized, and half as external (with 

the same caveat as for single-person accidents above). For accidents of type c), costs 

are usually all counted as external. In principle (part or all of) the latter costs might be 

internalized when a driver is held (fully or partly) responsible for such accidents. 

 

 

 

Solutions to part 3: Saving rainforests 

To point 1, it seems clear that a private firm will tend to set or have α = 0; an 

environmental NGO will also have a low value of α; while a government or 

international development institution will tend to set α higher. The case of α = 1 is a 

limit case that perhaps no development institution will maintain. Here in this problem, 

however, as α is assumed to take two possible values: either 0 or 1. It is then natural, 

as part of this problem, to identify the latter institutions with setting α = 1; while 

identifying private firms and NGOs with setting α = 0. 

 

Point 2: This is straightforward as the buyer can here always implement an efficient 

solution by setting H = B. The forest will then never be saved in case a); it will be 

saved with probability β1 in case b); with probability β1 + β2 in case c), and with 

probability 1 in case d).  

 

Point 3: With α = 1, the buyer has a range for implementing the optimal solution in all 

the cases b) – d). In case b) this range is [V1, V2], in case c) it is [V2, V3], and in case 

d) it is [V3, ∞].  

 

Point 4: In case b), this buyer will buy only in the case of V = V1, occurring with 

probability β, and pay the minimum amount to implement this solution, which is V1. 

This solution is socially efficient. 

 



Point 5: In this case, the buyer has a choice between implementing a payment only 

with probability β, and pay V1, or implementing a payment with probability 1, and pay 

V2. The condition for the latter solution to be chosen is then 
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Alternatively, this condition can be expressed as: 
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We see that when either V2 is relatively small, and/or β2 relatively large, the buyer will 

prefer to offer H = V2, in which case the forest will be saved in both cases V = V1, and 

V = V2, which is efficient. In other cases the forest will be saved only in state V = V1, 

which foregoes socially efficient saving in state V = V2, occurring with ex ante 

probability β2. 

 

Point 6: Here the situation is made slightly more complicated as it is now also socially 

efficient to save the forest when V = V3. Disregarding for the moment that state, the 

conclusions from point 5 still hold. We must now check whether saving the forest in 

state V3 can be an equilibrium for the buyer, in two different situations: First, when 

condition (1) (as well as (2)) holds and the buyer would save the forest in both states 

V1 and V2 (when the option to save the forest for V3) is not available. Secondly, when 

condition (1) does not hold, so that the buyer would save the forest only in case V1 

when the option V3 is not available. 

In the first case, the condition for saving the forest when V = V3 is (then the forest will 

be saved with probability 1): 
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In the second case, the similar condition is: 
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When both conditions (3) and (4) hold, the forest will be saved in all states. This 

occurs, generally, when the probability of occurrence of V3 (1-β1-β2) is relatively 

large, the probability of V1 (β1) is small, and V3 is not much larger than V2.  

We see that we can have cases where the forests would not be saved in state 2 given 

that the option 3 is not available (consequently, when V3 > B), but that the forest 

would be saved in all stated when option 3 is available (when V3 < B). This happens 

when V3 is not much greater than V2, the probability of V2 is relatively small, and the 

probability of V3 is relatively large. Then the buyer would not increase the price from 

V1 to V2 to capture a small number of additional sellers (probability β2 relatively 



small), but would increase the price slightly further to V3 if it thereby captures many 

potential sellers. Adding the third option then leads to an efficiency gain.  

 

  



 

 

 

Box 4.1. Measuring Congestion Costs: Some Technicalities 

 

 

The total costs (TC) per hour of congestion to passengers in vehicles driving along a one-km lane segment of a 

highway can be expressed: 

 

𝑇𝐶 = 𝑉 ∙ (𝑇 𝑉 − 𝑇𝑓) ∙ 𝑜 ∙ 𝑉𝑂𝑇 

 

Here V denotes traffic volume or flow—the number of cars that pass along the km-long stretch per hour (the 

implications of other vehicles on the road is discussed later). 𝑇𝑓  is travel time per km when traffic is free-

flowing and T (which exceeds 𝑇𝑓 ) is the actual travel time, is an increasing function of the traffic volume 

(because speeds fall with less road space between vehicles). o is vehicle occupancy (average number of 

passengers per vehicle). Total travel delay from congestion for all passengers is therefore ∙ 𝐴𝐷 ∙ 𝑜 , where 𝐴𝐷 =

𝑇 − 𝑇𝑓  is the average delay time per vehicle km. Multiplying total travel delay by the value of travel time 

(VOT) expresses delays as a monetary cost. 

 

Dividing TC by traffic volume gives the average cost of congestion (AC) per vehicle km: 

𝐴𝐶 = 𝐴𝐷 ∙ 𝑜 ∙ 𝑉𝑂𝑇 

 

This is the cost borne by individual motorists which (on average) they should take into account when deciding 

how much to drive. 

 

Differentiating TC with respect to V gives the added congestion cost to all road users from an extra vehicle km: 

𝑑𝑇𝐶/𝑑𝑉 = (𝐴𝐷 + 𝐷𝑜𝑡ℎ𝑒𝑟 ) ∙ 𝑜 ∙ 𝑉𝑂𝑇 

 

This includes the average cost (taken into account by the driver), as just described. It also includes the cost to 

occupants of other vehicles (which is not). The latter is the delay to other vehicles, denoted 𝐷𝑜𝑡ℎ𝑒𝑟 , times the 

average number of people in other vehicles, times the VOT to express costs in money units. In turn 𝐷𝑜𝑡ℎ𝑒𝑟 =

(𝑑𝑇/𝑑𝑉) ∙ 𝑉, the increase in travel time per vehicle times the number of vehicles. 

 

Suppose, as discussed in the text, that travel delay can be approximated by a power function of traffic volume, 

that is: 

𝐴𝐷 = 𝑇 − 𝑇𝑓 = 𝛼𝑉𝛽  

 

where 𝛼 and 𝛽 are constants. 𝛼 reflects factors like road capacity while 𝛽 reflects the rate at which additional 

traffic slows travel speeds.  Differentiating this expression by V gives 𝑑𝑇/𝑑𝑉 = 𝛼𝛽𝑉𝛽−1. With a bit of 

manipulation, we end up with: 

𝐷𝑜𝑡ℎ𝑒𝑟 = 𝐴𝐷 ∙ 𝛽 

 

That is, the delay to other vehicles is simply the product of average delay and the scalar 𝛽. As discussed below, 

empirical studies suggest a value for 𝛽 of between about 2.5 and 5 for congested roads. 

 

If speed data is available, average delay can be estimated using: 
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where S and Sf are the actual and the free-flow travel speeds (km/hour).   

  

 



  

 

 

Another way to write the condition for marginal congestion costs: 
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