Distribution and growth

Jo Thori Lind

ECON 4915 Spring 2007

1 No credit constraints

Consider an economy with a continuum of families with mass 1. Every family consists of a single person living for one period, leaving one offspring (so no population change). The agent in family i living in period t has initial wealth $a_{i, t}$. Using this capital and supplying one unit of labour, she earns $y_{i, t}$, which she spends on consumption $c_{i, t}$ and bequests $b_{i, t}$ for the next generation according to the utility function

$$
U=c_{i, t}^{1-s} b_{i, t}^{s},
$$

yielding $b_{i, t}=s y_{i, t}$. Hence

$$
a_{i, t+1}=b_{i, t}=s y_{i, t} .
$$

The distribution of wealth at time t is given by the cummulative distribution function $G_{t}(\cdot)$, where $G_{t}(w)$ is the fraction with income below w. Average wealth is then

$$
w_{t}=\int w d G_{t}(w)
$$

Each agent produces with a Cobb-Douglas technology. When she supplies 1 uint of labour and has access to k units of capital, she produces

$$
y=A k^{\alpha} .
$$

The rental rate of capital is r_{t} ($=1$ plus the interest rate). An agent then maximizes

$$
\max _{k_{i, t}} A k_{i, t}^{\alpha}-r_{t} k_{i, t}+r_{t} a_{i, t},
$$

which yields

$$
\alpha A k_{i, t}^{\alpha-1}=r_{t} \Rightarrow k_{i, t}=\left(\frac{\alpha A}{r_{t}}\right)^{\frac{1}{1-\alpha}} .
$$

Notie that this is the same for all agents, so for all $i, k_{i, t}=k_{t}$. The interest rate r_{t} is chosen so markets clear:

$$
k_{t}=\int w d G_{t}(w)=w_{t} .
$$

Hence total production is

$$
y_{t}^{*}=\int y_{i, t}=\int A k_{i, t}^{\alpha}=A\left(w_{t}\right)^{\alpha}
$$

which inly depends on average income w_{t} and not on distribution. So in the standard model with perfect credit markets, distribution has no effect.

2 Credit constraints (Piketty REStud 1997)

Consider now a model without credit markets. The only way to save is by investing in own capital. We then get that

$$
y_{i, t}=A\left(k_{i, t}\right)^{\alpha}=A\left(a_{i, t}\right)^{\alpha}
$$

and total production is

$$
y_{t}^{\dagger}=\int A a^{\alpha} d G_{t}(a)
$$

As $y(a)=A a^{\alpha}$ is a concave function, it follows from Jensen's inequality that

$$
\int A a^{\alpha} d G_{t}(a)<A\left(\int a d G(\alpha)\right)^{\alpha} \Rightarrow y_{t}^{\dagger}<y_{t}^{*}
$$

so production si lower, and more so the more spread there is in G_{t}. Henc edistribution matters

3 A model with occupational choice (Ghatak and Jiang 2002)

Still no credit markets. We now have three classes:

Subsistence Wage w. Income $y_{i, t}^{S}=\underline{\mathrm{w}}+r a_{i, t}$

Worker Wage w_{t}, works for entrepreneur. Income $y_{i, t}^{W}=w_{t}+r a_{i, t}$
Entrepreneur Invest I, hire one worker. Income $y_{i, t}^{E}=q-w_{t}+r\left(a_{i, t}-I\right)$
Industrialization efficient: $q-r I>2 w$.
Only agents with $a_{i, t} \geq I$ can become entrepreneurs. Hence $G_{t}(I)$ cannot become entrepreneurs.

At wage \bar{w}, indifferent between worker and entrepreneur:

$$
\bar{w}=q-\bar{w}-r I \Rightarrow \bar{w}=\frac{q-r I}{2}
$$

Labour supply to industry:

$$
\left\{\begin{array}{llc}
0 & \text { if } & w_{t}<\underline{\mathrm{w}} \\
{\left[0, G_{t}(I)\right]} & \text { if } & w_{t}=\underline{\mathrm{w}} \\
G_{t}(I) & \text { if } & \underline{\mathrm{w}}<w_{t}<\bar{w} \\
{\left[G_{t}(I), 1\right]} & \text { if } & \bar{w}=w_{t} \\
1 & \text { if } & \bar{w}<w_{t}
\end{array}\right.
$$

Labour demand from industry:

$$
\left\{\begin{array}{lll}
1-G_{t}(I) & \text { if } & w_{t}<\bar{w} \\
{\left[0,1-G_{t}(I)\right]} & \text { if } & w_{t}=\bar{w} \\
0 & \text { if } & w_{t}>\bar{w}
\end{array}\right.
$$

Only two cases, $w_{t}=\underline{\mathrm{w}}$ or $w_{t}=\bar{w}$. The first occurs iff $G_{t}(I)>1 / 2$. Then

$$
a_{i, t+1}=\left\{\begin{array}{lll}
=s\left[r a_{i, t}+\underline{\mathrm{w}}\right] & a_{i, t}<I & w_{t}=\underline{\mathrm{w}} \\
=s\left[r\left(a_{i, t}-I\right)+q-\underline{\mathrm{w}}\right] & a_{i, t}>I & w_{t}=\underline{\mathrm{w}} \\
=s\left[r a_{i, t}+\bar{w}\right] & \forall a_{i, t} & w_{t}=\bar{w}
\end{array} .\right.
$$

Assume $s r<1$: Wealth doesn't grow into heaven.
Stationary wealth distributions $\left(a_{i, t+1}=a_{i, t}\right)$:

$$
\begin{aligned}
a^{S} & =\frac{s \underline{\mathrm{w}}}{1-s r} \\
a^{W}(\underline{\mathrm{w}}) & =\frac{s \underline{\mathrm{w}}}{1-s r} \\
a^{W}(\bar{w}) & =\frac{s \bar{w}}{1-s r}=\frac{s(q-r I)}{2(1-s r)} \\
a^{E}(\underline{\mathrm{w}}) & =\frac{s(q-r I-\underline{\mathrm{w}})}{1-s r} \\
a^{E}(\bar{w}) & =\frac{s(q-r I)}{2(1-s r)}
\end{aligned}
$$

Case $1 a^{E}(\underline{\mathrm{w}})<I \Leftrightarrow s(q-\underline{\mathrm{w}})<I$. Everybody in subsistence in the long run.
Case $2 a^{E}(\bar{w})<I \leq a^{E}(\underline{\mathrm{w}}) \Leftrightarrow \frac{s q}{2-s r}<I<s(q-\underline{\mathrm{w}})$. If initially $G_{t}(I)>1 / 2$, wage always $\underline{\mathrm{w}}$, otherwise start in $\overline{\mathrm{w}}$, but after a while fewer entrepreneurs and finally $\underline{\mathrm{w}}$ reached.

Case $3 a^{W}(\bar{w})<I \leq a^{W}(\underline{\mathrm{w}}) \Leftrightarrow \frac{s \mathrm{w}}{1-s r}<I \leq \frac{s q}{2-s r}$. If initially $G_{t}(I)>1 / 2$, wage starts at $\underline{\mathrm{w}}$ and satys there forever. If initially $G_{t}(I)<1 / 2$, wage starts at \bar{w} and stays there.

Case $4 I \leq a^{W}(\underline{\mathrm{w}}) \Leftrightarrow I \leq \frac{s \mathrm{w}}{1-s r}$. In all cases the economy converges to the high wage equilibrium.

Table 3-Regression Results: Alternate Estimation Techniques

Estimation method	Five-year periods				Ten-year periods: fixed effects (5)
	Fixed effects (1)	Random effects (2)	Chamberlain's π-matrix (3)	Arellano and Bond (4)	
Inequality	0.0036	0.0013	0.0016	0.0013	0.0013
	(0.0015)	(0.0006)	(0.0002)	(0.0006)	(0.0011)
Income	-0.076	0.017	-0.027	-0.047	-0.071
	(0.020)	(0.006)	(0.004)	(0.008)	(0.016)
Male Education	-0.014	0.047	0.018	-0.008	-0.002
	(0.031)	(0.015)	(0.010)	(0.022)	(0.028)
Female Education	0.070	-0.038	0.054	0.074	0.031
	(0.032)	(0.016)	(0.006)	(0.018)	(0.030)
PPP	-0.0008	-0.0009	-0.0013	-0.0013	-0.0003
	(0.0003)	(0.0002)	(0.0000)	(0.0001)	(0.0003)
R^{2}	0.67	0.49			0.71
Countries	45	45	45	45	45
Observations	180	180	135	135	112
Period	1965-1995 ${ }^{\text {a }}$	1965-1995 ${ }^{\text {a }}$	1970-1995	1970-1995	1965-1995

Notes: Dependent variable is average annual per capita growth. Standard errors are in parentheses. R^{2} is the within- R^{2} for fixed effects and the overall $-R^{2}$ for random effects.
${ }^{\text {a }}$ Estimates are virtually identical for the period 1970-1995 (with 135 observations).

Figure 2. Relationship between income growth and lagged gini growth: partially linear model (Barro variables).

