Distribution and growth

Jo Thori Lind

ECON 4915 Spring 2007

1 No credit constraints

Consider an economy with a continuum of families with mass 1. Every family consists of a single person living for one period, leaving one offspring (so no population change). The agent in family *i* living in period *t* has initial wealth $a_{i,t}$. Using this capital and supplying one unit of labour, she earns $y_{i,t}$, which she spends on consumption $c_{i,t}$ and bequests $b_{i,t}$ for the next generation according to the utility function

$$U = c_{i,t}^{1-s} b_{i,t}^s,$$

yielding $b_{i,t} = sy_{i,t}$. Hence

$$a_{i,t+1} = b_{i,t} = sy_{i,t}.$$

The distribution of wealth at time t is given by the cumulative distribution function $G_t(\cdot)$, where $G_t(w)$ is the fraction with income below w. Average wealth is then

$$w_t = \int w \ dG_t\left(w
ight)$$

Each agent produces with a Cobb-Douglas technology. When she supplies 1 unit of labour and has access to k units of capital, she produces

$$y = Ak^{\alpha}.$$

The rental rate of capital is r_t (=1 plus the interest rate). An agent then maximizes

$$\max_{k_{i,t}} Ak_{i,t}^{\alpha} - r_t k_{i,t} + r_t a_{i,t},$$

which yields

$$\alpha A k_{i,t}^{\alpha-1} = r_t \Rightarrow k_{i,t} = \left(\frac{\alpha A}{r_t}\right)^{\frac{1}{1-\alpha}}$$

Notice that this is the same for all agents, so for all i, $k_{i,t} = k_t$. The interest rate r_t is chosen so markets clear:

$$k_t = \int w \ dG_t \left(w \right) = w_t.$$

Hence total production is

$$y_t^* = \int y_{i,t} = \int Ak_{i,t}^{\alpha} = A(w_t)^{\alpha},$$

which inly depends on average income w_t and not on distribution. So in the standard model with perfect credit markets, distribution has no effect.

2 Credit constraints (Piketty REStud 1997)

Consider now a model without credit markets. The only way to save is by investing in own capital. We then get that

$$y_{i,t} = A\left(k_{i,t}\right)^{\alpha} = A\left(a_{i,t}\right)^{\alpha}$$

and total production is

$$y_t^{\dagger} = \int A a^{\alpha} \, dG_t \left(a \right)$$

As $y(a) = Aa^{\alpha}$ is a concave function, it follows from Jensen's inequality that

$$\int Aa^{\alpha} \, dG_t \left(a \right) < A \left(\int a \, dG \left(\alpha \right) \right)^{\alpha} \; \Rightarrow \; y_t^{\dagger} < y_t^*$$

so production si lower, and more so the more spread there is in G_t . Henc edistribution matters

3 A model with occupational choice (Ghatak and Jiang 2002)

Still no credit markets. We now have three classes:

Subsistence Wage w. Income $y_{i,t}^S = w + ra_{i,t}$

Worker Wage w_t , works for entrepreneur. Income $y_{i,t}^W = w_t + ra_{i,t}$

Entrepreneur Invest *I*, hire one worker. Income $y_{i,t}^E = q - w_t + r (a_{i,t} - I)$

Industrialization efficient: q - rI > 2w.

Only agents with $a_{i,t} \ge I$ can become entrepreneurs. Hence $G_t(I)$ cannot become entrepreneurs.

At wage \bar{w} , indifferent between worker and entrepreneur:

$$\bar{w} = q - \bar{w} - rI \Rightarrow \bar{w} = \frac{q - rI}{2}$$

Labour supply to industry:

$$\begin{cases} 0 & \text{if } w_t < \underline{w} \\ [0, G_t(I)] & \text{if } w_t = \underline{w} \\ G_t(I) & \text{if } w < w_t < \overline{w} \\ [G_t(I), 1] & \text{if } \overline{w} = w_t \\ 1 & \text{if } \overline{w} < w_t \end{cases}$$

Labour demand from industry:

$$\begin{cases} 1 - G_t(I) & \text{if } w_t < \bar{w} \\ [0, 1 - G_t(I)] & \text{if } w_t = \bar{w} \\ 0 & \text{if } w_t > \bar{w} \end{cases}$$

Only two cases, $w_t = \underline{w}$ or $w_t = \overline{w}$. The first occurs iff $G_t(I) > 1/2$. Then

$$a_{i,t+1} = \begin{cases} = s [ra_{i,t} + \underline{w}] & a_{i,t} < I \quad w_t = \underline{w} \\ = s [r (a_{i,t} - I) + q - \underline{w}] & a_{i,t} > I \quad w_t = \underline{w} \\ = s [ra_{i,t} + \overline{w}] & \forall a_{i,t} \quad w_t = \overline{w} \end{cases}$$

Assume sr < 1: Wealth doesn't grow into heaven.

Stationary wealth distributions $(a_{i,t+1} = a_{i,t})$:

$$\begin{aligned} a^{S} &= \frac{s\underline{w}}{1-sr} \\ a^{W}\left(\underline{w}\right) &= \frac{s\underline{w}}{1-sr} \\ a^{W}\left(\bar{w}\right) &= \frac{s\bar{w}}{1-sr} = \frac{s\left(q-rI\right)}{2\left(1-sr\right)} \\ a^{E}\left(\underline{w}\right) &= \frac{s\left(q-rI-\underline{w}\right)}{1-sr} \\ a^{E}\left(\bar{w}\right) &= \frac{s\left(q-rI\right)}{2\left(1-sr\right)} \end{aligned}$$

Case 1 $a^{E}(\underline{w}) < I \iff s(q - \underline{w}) < I$. Everybody in subsistence in the long run.

- **Case 2** $a^{E}(\bar{w}) < I \leq a^{E}(\underline{w}) \Leftrightarrow \frac{sq}{2-sr} < I < s(q-\underline{w})$. If initially $G_{t}(I) > 1/2$, wage always \underline{w} , otherwise start in \bar{w} , but after a while fewer entrepreneurs and finally \underline{w} reached.
- **Case 3** $a^{W}(\bar{w}) < I \leq a^{W}(\bar{w}) \iff \frac{s_{\bar{w}}}{1-sr} < I \leq \frac{sq}{2-sr}$. If initially $G_t(I) > 1/2$, wage starts at \bar{w} and satys there forever. If initially $G_t(I) < 1/2$, wage starts at \bar{w} and stays there.
- **Case 4** $I \leq a^{W}(\underline{w}) \iff I \leq \frac{s\underline{w}}{1-sr}$. In all cases the economy converges to the high wage equilibrium.

VOL. 90 NO. 4

877

Estimation method	Five-year periods				Ton your
	Fixed effects (1)	Random effects (2)	Chamberlain's π -matrix (3)	Arellano and Bond (4)	fixed effects (5)
Inequality	0.0036	0.0013	0.0016	0.0013	0.0013
	(0.0015)	(0.0006)	(0.0002)	(0.0006)	(0.0011)
Income	-0.076	0.017	-0.027	-0.047	-0.071
	(0.020)	(0.006)	(0.004)	(0.008)	(0.016)
Male Education	-0.014	0.047	0.018	-0.008	-0.002
	(0.031)	(0.015)	(0.010)	(0.022)	(0.028)
Female Education	0.070 (0.032)	-0.038 (0.016)	0.054 (0.006)	0.074 (0.018)	0.031 (0.030)
PPP	-0.0008	-0.0009	-0.0013	-0.0013	-0.0003
	(0.0003)	(0.0002)	(0.0000)	(0.0001)	(0.0003)
R ² Countries Observations Period	0.67 45 180 1965–1995*	0.49 45 180 1965–1995 ^a	45 135 1970–1995	45 135 1970–1995	0.71 45 112 1965–1995

TABLE 3-REGRESSION RESULTS: ALTERNATE ESTIMATION TECHNIQUES

Notes: Dependent variable is average annual per capita growth. Standard errors are in parentheses. R^2 is the within R^2 for fixed effects and the overall R^2 for random effects.

^a Estimates are virtually identical for the period 1970–1995 (with 135 observations).

Figure 2. Relationship between income growth and lagged gini growth: partially linear model (Barro variables).