### **ECON 4921: Lecture 11**

Jon Fiva, 2009

# Roadmap

- 1. Introduction
- 2. Institutions and Economic Performance
- 3. The Firm
- 4. Organized Interest and Ownership
- 5. Complementarity of Institutions
- 6. Institutions and Commitment
- 7. Agency problems: Voters- Politicians-Bureaucrats
- 8. Fiscal Federalism
- 9. System Competition

### Fiscal federalism

- Which functions are best centralized and which are best placed in the sphere of decentralized levels of government?
  - Traditional understanding: Oates decentralization theorem.
    - Trade-off: Spillovers vs. Preference matching
    - Important ass.: uniform level of spending (CEN)
  - Besley and Coate analyze a richer political economy setting at the center

# **Besley and Coate**

- Another variant of common pool problem:
  - Public spending determined by the national legislature
  - Citizens of different jurisdictions have conflicting interests
  - Spending benefits primarily people living in one district. Costs borne collectively.

### The model

- Two districts,
- # inhabitants normalized to 1 within each district
- Two local public goods: g1, g2
- One private good: x
- Production of one unit of either g requires p units of x

### Preferences

Public good preference parameter: λ

$$x + \lambda[(1 - \kappa) \ln g_i + \kappa \ln g_{-i}].$$

- λ varies across districts and across citizens within districts
- Within each district:  $[0, \overline{\lambda}]$
- Mean and median type in district i :  $m_i$  ,  $m_1 \ge m_2$
- Degree of spillovers  $\kappa \in [0, 1/2]$ 
  - Equal for all citizens
  - Citizens only care about own public good:  $\kappa = 0$
  - Citizens care equally about both public goods:  $\kappa = 1/2$

# Alternative systems

- Decentralization:
  - Each g decided on locally
  - Financed by head tax on local citizens: pg
- Centralization:
  - Both g decided in national legislature
  - Financed by head tax on all citizens:  $\frac{p(g_1+g_2)}{2}$

### Outline

- Normative benchmark
- Standard FGFF approach (Oates)
- Political economy SGFF approach (Besley and Coate)

### Normative benchmark

Aggregate public good surplus:

$$S(g_1, g_2) = [m_1(1 - \kappa) + m_2 \kappa] \ln g_1 + [m_2(1 - \kappa) + m_1 \kappa] \ln g_2 - p(g_1 + g_2)$$

• FOC gives:

$$(g_1, g_2) = \left(\frac{m_1(1-\kappa) + m_2\kappa}{p}, \frac{m_2(1-\kappa) + m_1\kappa}{p}\right)$$

• m1>m2  $\rightarrow$  g1>g2 (for k<1/2)

### Outline

- Normative benchmark
- Standard FGFF approach (Oates)
- Political economy SGFF approach (Besley and Coate)

# The standard approach (Oates72)

Decentralized solution:

$$g_i^d = \operatorname{argmax}_{g_i} \{ m_i [(1 - \kappa) \ln g_i + \kappa \ln g_{-i}^d] - p g_i \}, i \in \{1, 2\}.$$

• FOC gives:

$$(g_1^d, g_2^d) = \left(\frac{m_1(1-\kappa)}{p}, \frac{m_2(1-\kappa)}{p}\right)$$

- Similar to normative benchmark in the case that there are <u>no spillovers</u>.
- With spillovers: underprovision

# The standard approach (Oates72)

Centralized solution, uniform solution:

$$g^c = \arg \max_{g} \{ [m_1 + m_2] \ln g - 2pg \}$$

• FOC gives:

$$g^c = \frac{m_1 + m_2}{2p}$$

- Similar to normative benchmark in the case that there are **no preference heterogeneity**.
- With preference heterogeneity (m1>m2):
  - Underprov. in 1, Overprov. in 2. (except when k=1/2)

### Oates' decentralization theorem

|   | Externalities? (k>0) | Diff<br>regions?<br>(m1>m2) | Decentralized vs centralized provision? |
|---|----------------------|-----------------------------|-----------------------------------------|
| 1 | NO                   | NO                          | Irrelevant                              |
| 2 | NO                   | YES                         | Decentralized                           |
| 3 | YES                  | NO                          | Centralized                             |
| 4 | YES                  | YES                         | Unclear                                 |

## Concerning case 4

- Surplus under decentralization is decreasing in the extent of spillovers (k)
- There exists a critical level of k where
  - Below k': decentralization dominates
  - Above k': centralization dominates



### Without uniform national solution

- If (benevolent) central government where permitted to choose different levels of g for the two districts.
  - → Centralization would produce at least as much surplus as decentralization.
  - → Always superior in the presence of spillovers.

### Outline

- Normative benchmark
- Standard FGFF approach (Oates)
- Political economy SGFF approach (Besley and Coate)

### Citizen-candidate model

- Each district choose a representative to send to national legislature.
  - We focus on the non-cooperative solution (section 4 in Besley and Coate).
- In national legislature candidates make choices in line with own preferences.

# Timing in decentralized system

- 1. Elections
- 2. Elected citizen implement policy (simultenously in both districts)

# Backward induction, stage 2

 Let λi denote representative from district i's preferences:

$$g_i(\lambda_i) = \arg \max_{g_i} \{ \lambda_i [(1 - \kappa) \ln g_i + \kappa \ln g_{-i}(\lambda_{-i})] - pg_i \}$$
 for  $i \in \{1, 2\}$ .

FOC gives:

$$(g_1(\lambda_1), g_2(\lambda_2)) = \left(\frac{\lambda_1(1-\kappa)}{p}, \frac{\lambda_2(1-\kappa)}{p}\right)$$

# Backward induction, stage 1

 Voter of type λ consider which citizen to vote for. This voter's public goods surplus level:

$$\lambda \left[ (1 - \kappa) \ln \frac{\lambda_i (1 - \kappa)}{p} + \kappa \ln \frac{\lambda_{-i} (1 - \kappa)}{p} \right] - \lambda_i (1 - \kappa)$$

(first term: benefits. Second term: costs, when inserting for g from stage 2)

Maximization of this expression wrt to  $\lambda i$ :

 $\rightarrow$  voters get max surplus when  $\lambda = \lambda i$ 

### Outcome in decentralized solution

• Single peaked\* preferences:  $(\lambda_1^*, \lambda_2^*) = (m_1, m_2)$ 

$$(g_1, g_2) = \left(\frac{m_1(1-\kappa)}{p}, \frac{m_2(1-\kappa)}{p}\right)$$

<sup>\*</sup> Given any two types  $\lambda_i$  and  $\lambda_i'$  such that  $\lambda_i < \lambda_i' < \lambda$  or  $\lambda < \lambda_i' < \lambda_i$ , type  $\lambda$  citizens always prefer type  $\lambda_i'$ 

# Timing in centralized system

- 1. Elections to national legislature
- 2. National legislature choose g1, g2
  - Minimum winning coalition (MWC)
    - With prob.  $\frac{1}{2}$ :  $(g_1^1(\lambda_1), g_2^1(\lambda_1))$
    - With prob.  $\frac{1}{2}$ :  $(g_1^2(\lambda_2), g_2^2(\lambda_2))$

# Backward induction, stage 2

$$(g_1^i(\lambda_i), g_2^i(\lambda_i)) = \arg\max_{(g_i, g_{-i})} \left\{ \lambda_i [(1 - \kappa) \ln g_i + \kappa \ln g_{-i}] - \frac{p}{2} (g_i + g_{-i}) \right\}$$

#### • FOC gives:

$$(g_i^i(\lambda_i), g_{-i}^i(\lambda_i)) = \left(\frac{2\lambda_i(1-\kappa)}{p}, \frac{2\lambda_i\kappa}{p}\right), \quad i \in \{1, 2\}.$$

## Backward induction, stage 1

 Voter of type λ consider which citizen to vote for. This voter's public goods surplus level:

$$\frac{1}{2} \left\{ \lambda \left[ (1 - \kappa) \ln \frac{2\lambda_i (1 - \kappa)}{p} + \kappa \ln \frac{2\lambda_i \kappa}{p} \right] - \lambda_i + \lambda \left[ (1 - \kappa) \ln \frac{2\lambda_{-i} \kappa}{p} + \kappa \ln \frac{2\lambda_{-i} (1 - \kappa)}{p} \right] - \lambda_{-i} \right\}.$$

First term: benefits if in MWC

Second term: costs if in MWC

Third term: benefits if NOT in MWC

Fourth term: costs if NOT in MWC

Maximization of this expression wrt to  $\lambda i$ :

 $\rightarrow$  voters get max surplus when  $\lambda = \lambda i$ 

### Outcome in centralized solution

- With prob.  $\frac{1}{2}$ :  $(2\lambda_1^*(1-\kappa)/p, 2\lambda_1^*(\kappa)/p)$
- With prob.  $\frac{1}{2}$ :  $(2\lambda_2^* \kappa/p, 2\lambda_2^* (1 \kappa)/p)$

• And with single-peaked preferences:  $(\lambda_1^*, \lambda_2^*) = (m_1, m_2)$ 

### Outcome in centralized solution

This result highlights the two principal drawbacks of centralization with a non-cooperative legislature:

- *Uncertainty:* each district is unsure of the amount of public good that it will receive, reflecting the uncertainty in the identity of the minimum winning coalition.
- Misallocation: public spending across the districts is skewed towards those inside the winning coalition.

### Outcome in centralized solution

- Misallocation problem worse when spillovers are low.
  - High spillovers alleviate selfishness of MWC
- Only when ...
  - m1=m2=m (identical regions)
  - k=1/2 (complete spillovers)
- ... does the centralized solution provide efficient levels of local public services.
- In FGFF only one of the conditions are necessary.



### Weaker case for centralization

- In SGFF centralization depends on k.
  - Intuition: service provision skewed towards MWC.
     Problem is less severe the larger the extent of spillovers.
- Weakens the case for centralization
  - -k''>k'