Econ4925 – Seminar 4

Hydrowpower

Consider a two period model of an exhaustible resource. The initial resource stock is S and the use of the resource in the two periods is x_1 and x_2 , hence $x_1 + x_2 = S$. Interpret the resource as representing a water reservoir and the use as hydropower production during two half-year periods.

The utility function of the representative household is $u_t(x_t) + y_t$, for t = 1, 2, where y_t is exogenous. The discount factor is $b \in (0; 1]$.¹ We here specify the utility function as $u_t(x_t) = \ln(\alpha_t + x_t)$, where α_1 and α_2 are exogenous, positive parameters.

1. Interpret α_1 and α_2 when the resource is the water in a reservoir to be used up during one year.

2. Derive the socially optimal use of water in period 1, x_1^* .

3. Denote the optimal use of water in period 1 by a profit maximizing monopolist as x_1^M . What can you say about the sign of $x_1^* - x_1^M$?

4. Assume S is not known when x_1 is determined. The expected value of S is the same as before. How are x_1^* and x_1^M affected by such uncertainty?

5. Assume now that α_2 is unknown when x_1 is chosen (the expected value of α_2 is unchanged). How is x_1^* affected by that type of uncertainty?

6. Consider (5.) once again. What will the competitive outcome x_1^C be if producers are risk averse?

 $^1b = rac{1}{1+r}$