ECON4925 Environmental economics, Spring 2010

Lecture 1: Overview (Michael Hoel)

Issues in resource economics

- I. Types of resources
 - Non-renewables
 - Minerals, oil, gas, coal
 - Renewables
 - Fish, forests, water
- II. Questions to be studied
 - Optimal depletion of non-renewables
 - Optimal harvesting of renewable
 - Market forms
 - Perfect competition
 - Monopoly
 - Policy instruments to achieve optimality
 - Role of ownership for utilisation of common-pool renewable resources
 - Effect of trade and institutions on resource use
- III. Main types of models
 - Cake eating model
 - limited amount of non-renewable resources
 - Hotelling's rule
 - Limited non-renewable resources, production of man-made resources
 - Biological growth of renewable resources
 - Modelling the growth process
 - Role of steady state and sustainability
- IV. Necessary mathematical skills
 - Differential equations
 - Optimal control theory

Resources discussed in the course

Resource	Is sustainable use possible?	Does use today affect availability tomorrow?
Fossil fuels	No	Yes
Minerals	No	Yes
Hydropower	Yes	Yes within a year
Wind and solar energy	Yes	No
Forests	Yes	Yes
Fish	yes	Yes

Non-renewable resources (fossil fuels and minerals):

$$\max U(x_1...x_n) \text{ subject to } \sum_i x_i \leq S_0 \text{ gives (if } \sum_i x_i = S_0) \ U_{x1} = ... = U_{xn}$$

Special case of
$$U(x_1...x_n) = \sum_i \beta^{i-1} u(x_i)$$
 gives

$$\beta^i u'(x_i) = u'(x_1)$$
. Obvious interpretation of β is $\beta = \frac{1}{1+r}$ where r is a discount rate

I.e. present value of marginal utility is the same in all periods. Or present value of resource price is the same in all periods.

Hydropower: Similar problem as above within each year

Wind and solar energy: Very low operating costs, so once installed used at full capacity (if electricity price is positive). Stochastic production.

Forests and fish: Renewable resources; sustained use is possible. Maximal sustainable yield is not economically optimal for r>0. Private ownership versus open access.

Discounting and sustainability: What is the economic background for r>0? What is optimal resource use in the context of optimal economic development?