
ECON4925 Resource economics, Autumn 2015

Lecture 3: Forest resources

Updated August 31, 2015
Reading list:
Perman et al., Ch. 18
Holtsmark et. al

Outline of lecture:
(with reference to most central sections in Perman)

1. What are the issues? Introduction and sections 18.1 and 18.2

2. Optimal management of a commercial forestry. Sec 18.3 (in par-
ticular 18.3.2).

� using the same model as for �sh
� using the Faustmann model

3. Other forest services. Sec. 18.4 and 18.5

� Recreation services
� Ecological services
� Biodiversity
� Carbon sink, see in particular Holtsmark at al and this lecture
note

4. Alternative uses of land. Sec. 18.6

Forest resources: The optimal rotation period

Present value of forest with rotation period T :

V (T ) = v(T ) + e�rTV (T )

where v(T ) = e�rTm(T ) � k (we have set the price of timber equal to
1). The expression above may be rewritten as

V (T ; k; r) =
e�rTm(T )� k
1� e�eT =

m(T )� erTk
erT � 1 =

m(T )� k
erT � 1 � k
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To �nd the optimal value of T we di¤erentiate w.r.t. T :

VT (T ; k; r) =
1

(erT � 1)2
��
erT � 1

�
m0(T )� (m(T )� k) rerT

�
= 0

or

VT (T ; k; r) =
1

erT � 1

�
m0(T )� (m(T )� k) re

rT

erT � 1

�
= 0

or

VT (T ; k; r) =
1

erT � 1

�
m0(T )� r

1� e�rT (m(T )� k)
�
= 0

This may be rewritten in several ways. In particular:

m0(T ) = r
(m(T )� k)
1� e�rT = r

�
m(T ) +

e�rTm(T )� k
1� e�rT

�
= r [m(T ) + V (T )]

Notice that V (T ) > 0 implies that the optimal T satis�es m0(T )
m(T )

> r.
Let B denote the square brackets in VT . The signs of VTk and VTr

are equal to the signs of Bk and Br. It can be shown that Bk > 0 and
Br < 0. We therefore have:

@T

@k
=�VTk

VTT
> 0

@T

@r
=� VTr

VTT
< 0

Forests as carbon sinks
This section shows some of the points made in Holtsmark et al., but
using the approach of
Hoel, Michael and Thea Marcelia Sletten, "Wood-Based Bioenergy",

CESifo Working Paper No. 4686, March 2014 j Abstract j PDF Down-
load

We model the total volume of the forest in the same way as �sh, with

_S =G(S)� x
0�x(t) � �x where �x is "large"

S(t)� 0
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The total stock will be higher the higher is the average age at har-
vesting, see appendix at the end of this lecture note.

Ignoring planting costs k, the optimal outcome is found by solving

Max

Z 1

0

e�rtpxdt

We instead solve a slightly more general model. Assume that the
�ows of carbon into and out of the atmosphere are valued at q. Moreover,
assume that when the forest is harvested, a fraction � of the carbon is
immediately released into the atmosphere. The rest is stored in buildings
etc for ever (see Holtsmark et al. for a more realistic case). The natural
growth G(S) of the forest absorbs carbon from the atmosphere. Given
these assumptions, we solve

Max

Z 1

0

e�rt [px+ qG(S)� q�x] dt

The current value Hamiltonian is :

H = (p� q�)x+ qG(S) + � [G(S)� x]
Note: In this model it is not necessarily true that �(t) > 0: If S is so
large that G0 < 0, a higher value of S will give a lower value of qG(S),
which cet. par. is "bad". If this outweighs the positive e¤ect of a larger
S making a higher x temporarily possible, we get �(t) < 0.

Conditions for optimum (omitting time references):

_�� r�=�@H
@S

= �(q + �)G0

@H

@x
= p� q� � � = 0 (for 0 < x < �x)

Limt!1e
�rt�(t)S(t)= 0

Assume that the optimal solution approaches (asymptotically) a sta-
tionary state, i.e. _� = _S = 0. In this case it follows from the equations
above that the stationary state (��; S�; x�) is given by (provided we have
an interior equilibrium; see below)

x�=G(S�) (1)

��= p� q�

��=
qG0(S�)

r �G0(S�)
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Notice that for the special case of q = 0 we get the Faustmann Rule,
which now takes the form G0(S�) = r (provided p > 0).
For q > 0 we have

~� � ��

q
=
p

q
� � = G0(S�)

r �G0(S�)

A stable steady state implies G0 < r. It follows that an increase
in ~� (for p > 0) must imply G0 up , hence S� down (since G00 < 0):
The consequence of this increase of S� on x� depends on whether G0 is
positive or negative.
Notice that ~� increases if p increases or � declines. An increase in q

will reduce ~� if p > 0 but increase ~� if p > 0.
In the reasoning above it was implicitly assumed that S� < �S. If

p � q� � � < 0 we get x = 0, and the steady state will be given by
S� = �S. This will be the equilibrium outcome if

p

q
� � < G0( �S)

r �G0( �S)

For q su¢ ciently small, this must hold if p < 0.

Appendix: A multi-vintage forest with constant ro-
tation time
Consider a forest area consisting of N trees of varying vintages. A t year
old tree has a size (measured in carbon content) m(t), where m(0) = 0,
m(t) = �m for t � �T , m0(t) > 0 for t 2 (0; �T ), m00(t) > 0 for t 2 (0; ~t) and
m00(t) < 0 for t 2 (~t; �T ).
Consider a constant rotation time of T years. This gives a steady

state harvest equal to h(T ), and a steady state carbon stock equal to
S(T ). If all trees grow till they are T years old, there are T vintages in
the forest area, and N=T trees of each vintage. In particular, there are
N=T trees of vintage T , the harvest is thus

h(T ) =
N

T
m(T )

It is clear that h0(T ) > 0 for m0(T ) > m(T )
T

and h0(T ) < 0 for m0(T ) <
m(T )
T
. The rotation time that maximizes h(T ) is thus TMSY de�ned by

m0(TMSY ) = m(TMSY )
TMSY . The value h(TMSY ) thus corresponds to g(SMSY )

in our setup.
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The carbon content of each of the N=T trees of vintage t is m(t).
The carbon content of the whole forest is therefore

S(T ) =

TZ
0

N

T
m(t)dt

It follows that

S 0(T ) =
N

T

24m(T )� 1

T

TZ
0

m(t)dt

35 > 0
Using l�Hospital�s rule we �nd

LimT!0S(T )=Nm(0) = 0

LimT!1S(T )=N �m

The latter value corresponds to �S in our setup.
To conclude: Increasing T from 0 to TMSY increases S from 0 to

SMSY and also increases the harvest from 0 to g(SMSY ). Increasing T
further continues to increase S, reaching its limit �S as T approaches
in�nity (i.e. no harvest). Increases in T beyond TMSY give a monoton-
ically declining harvest, reaching zero as T approaches in�nity.
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