ECON4925 Resource economics, Autumn 2015

Lecture 3: Forest resources

Updated August 31, 2015
Reading list:
Perman et al., Ch. 18
Holtsmark et. al

Outline of lecture:
(with reference to most central sections in Perman)
1. What are the issues? Introduction and sections 18.1 and 18.2

2. Optimal management of a commercial forestry. Sec 18.3 (in par-
ticular 18.3.2).

e using the same model as for fish

e using the Faustmann model
3. Other forest services. Sec. 18.4 and 18.5

e Recreation services
e Ecological services
e Biodiversity

e Carbon sink, see in particular Holtsmark at al and this lecture
note

4. Alternative uses of land. Sec. 18.6

Forest resources: The optimal rotation period

Present value of forest with rotation period 7'

V(T) = v(T) + e "TV(T)

where v(T) = e ""'m(T) — k (we have set the price of timber equal to
1). The expression above may be rewritten as
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To find the optimal value of T' we differentiate w.r.t. 7"
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This may be rewritten in several ways. In particular:
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Notice that V(T') > 0 implies that the optimal T" satisfies 7;:;(;)) > 7.
Let B denote the square brackets in V. The signs of Vi, and Vi,
are equal to the signs of B, and B,. It can be shown that B, > 0 and

B, < 0. We therefore have:
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Forests as carbon sinks

This section shows some of the points made in Holtsmark et al., but
using the approach of

Hoel, Michael and Thea Marcelia Sletten, "Wood-Based Bioenergy",
CESifo Working Paper No. 4686, March 2014 | Abstract | PDF Down-
load

We model the total volume of the forest in the same way as fish, with

G(S)—=x
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The total stock will be higher the higher is the average age at har-
vesting, see appendix at the end of this lecture note.

Ignoring planting costs k, the optimal outcome is found by solving

Max/ e "pxdt
0

We instead solve a slightly more general model. Assume that the
flows of carbon into and out of the atmosphere are valued at g. Moreover,
assume that when the forest is harvested, a fraction [ of the carbon is
immediately released into the atmosphere. The rest is stored in buildings
etc for ever (see Holtsmark et al. for a more realistic case). The natural
growth G(S) of the forest absorbs carbon from the atmosphere. Given
these assumptions, we solve

Ma:z:/ e " [px + qG(S) — qBx] dt
0

The current value Hamiltonian is :

H = (p—qb)r +qG(S) + AG(S) — ]

Note: In this model it is not necessarily true that A(t) > 0: If S is so
large that G’ < 0, a higher value of S will give a lower value of ¢G(S),
which cet. par. is "bad". If this outweighs the positive effect of a larger
S making a higher = temporarily possible, we get A\(¢) < 0.

Conditions for optimum (omitting time references):
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Assume that the optimal solution approaches (asymptotically) a sta-
tionary state, i.e. A =S = 0. In this case it follows from the equations
above that the stationary state (A", S*, x*) is given by (provided we have
an interior equilibrium; see below)
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Notice that for the special case of ¢ = 0 we get the Faustmann Rule,
which now takes the form G'(S*) = r (provided p > 0).
For ¢ > 0 we have
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A stable steady state implies G’ < r. It follows that an increase
in A (for p > 0) must imply G’ up , hence S* down (since G” < 0).
The consequence of this increase of S* on z* depends on whether G’ is
positive or negative.

Notice that A increases if p increases or 3 declines. An increase in g
will reduce A if p > 0 but increase \ if p > 0.

In the reasoning above it was implicitly assumed that S* < S. If
p—qB — X <0 we get z =0, and the steady state will be given by
S* = S. This will be the equilibrium outcome if

p G'(S)
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For ¢ sufficiently small, this must hold if p < 0.

Appendix: A multi-vintage forest with constant ro-
tation time

Consider a forest area consisting of N trees of varying vintages. A t year
old tree has a size (measured in carbon content) m(t), where m(0) = 0,
m(t) =mfort >T,m'(t) > 0fort € (0,T), m"(t) > 0fort € (0,%) and
m'(t) <0 fort € (t,7T).

Consider a constant rotation time of T" years. This gives a steady
state harvest equal to h(T), and a steady state carbon stock equal to
S(T). If all trees grow till they are T years old, there are T' vintages in
the forest area, and N/T trees of each vintage. In particular, there are
N/T trees of vintage T', the harvest is thus
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It is clear that A/(T") > 0 for m/(T) > @ and A'(T) < 0 for m/(T) <

@. The rotation time that maximizes h(T) is thus 7MY defined by

m!(TM5Y) = m(TTIVZSYY) The value h(T™5Y) thus corresponds to g(SM5Y)

in our setup.




The carbon content of each of the N/T trees of vintage t is m(t).
The carbon content of the whole forest is therefore

S(T) = / gm(t)dt

It follows that

Using I’Hospital’s rule we find

Limg—.sS(T) = Nm

The latter value corresponds to S in our setup.

To conclude: Increasing T from 0 to TM5Y increases S from 0 to
SMSY and also increases the harvest from 0 to g(SM°Y). Increasing T'
further continues to increase S, reaching its limit S as T approaches
infinity (i.e. no harvest). Increases in T' beyond T™*Y give a monoton-
ically declining harvest, reaching zero as 1" approaches infinity.



