From Common to Private ownership

Moene, K.

September 2018

We want to show that \hat{w} is lower than \tilde{w} , namely that the wage under Commons Ownership is higher than the wage under Private Ownership.

Two Valleys called 1 and 2 with workers n_1 and n_2 produce output $F_1(n_1)$ and $F_2(n_2)$.

Where R_i is the rent in village i, n_i is the number of workers in village i and β is the share of rent that is intended for

Commons:

$$\frac{F_1(\widetilde{n}_1)}{\widetilde{n}_1} = \frac{F_2(\widetilde{n}_2)}{\widetilde{n}_2} = \widetilde{w} \quad and \quad \widetilde{n}_1 + \widetilde{n}_2 = L \tag{1}$$

In other words

$$F_1(\widetilde{n}_1) + F_2(\widetilde{n}_2) = (\widetilde{n}_1 + \widetilde{n}_2)\widetilde{w} = L\widetilde{w}$$
(2)

Privatization

$$R_1 = F_1(\hat{n}_1) - \hat{w}\hat{n}_1, R_2 = F_2(\hat{n}_2) - \hat{w}\hat{n}_2$$
(3)

$$F'(\hat{n}_1) = \hat{w}, F'(\hat{n}_2) = \hat{w} \tag{4}$$

assuming that wages are equal to marginal productivity of labor

$$\beta(R_1 + R_2) = \hat{w}\hat{n}_s, R_1 + R_2 = R \tag{5}$$

and \widehat{n}_s is the number of workers at non agricultural activities

Show that $\widetilde{w} > \widehat{w}$ for all $\beta < 1$.

First, if $\tilde{n}_i \leq \hat{n}_i$ for at least on i (that is if there exists one valley with less workers under commons than under privatization) then $\tilde{w} = \frac{F_1(\tilde{n}_1)}{\tilde{n}_1} > F'(\hat{n}_1) = \hat{w}$ because of decreasing marginal productivity.

Second, the alternative is $\tilde{n}_1 \geq \hat{n}_1$ and $\tilde{n}_2 \geq \hat{n}_2$.

Consider:

Commons $F_1(\tilde{n}_1) + F_2(\tilde{n}_2) = \tilde{w}L \ge F_1(\hat{n}_1) + F_2(\hat{n}_2)$ Private, since $\tilde{n}_i \ge \hat{n}_i$

Since rents plus wage earnings equal total production

$$= \hat{n}_1 \hat{w} + \hat{n}_2 \hat{w} + R > \hat{w} (\hat{n}_1 + \hat{n}_2) + \beta R$$

Strict inequality since $\beta < 1$ from definition of β

$$= \hat{w}(\hat{n}_{1} + \hat{n}_{2}) + \hat{n}_{s} = \hat{w}(\hat{n}_{1} + \hat{n}_{2} + \hat{n}_{s}) = \hat{w}L$$

So that $\widetilde{w}L > \widehat{w}L$ which leads to $\widetilde{w} > \widehat{w}$