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ECON5160: On portfolio separation

This paper concerns the portfolio optimization problem for a small agent in a frictionless continuous-
time market where prices are geometric independent increment processes with elliptically distributed
increments. Portfolio separation is the property that a (large) market can be reduced to a few indices
(«funds») without the agents being worse off. The simplest case, two-fund separation, reduces the
number of funds to 2, and the optimization to the (one-dimensional!) allocation between those. We
call it have monetary separation if there is a monetary account which can be taken as one of the
funds; i.e., two-fund monetary separation is the property that one can find an index and allocate the
investment between this index and safe money.

Whether the separation property holds, is a matter of the agents’ preferences and/or the probability
distribution of the returns vector. Starting from Tobin [I3]|, generalizations have to a great extent
gone either in the direction of characterizing the preferences which admit separation regardless of
distribution (Cass and Stiglitz [I], discrete time, if the utility function is smooth) or a character-
ization in terms of distributions (Ross [II]provides necessary and sufficient conditions, and Owen
and Rabinovitch [8] and Chamberlain [2] show that elliptically distributed returns satisfy these, by
mean—variance trade-off ). However, portfolio separation can also stem from other approaches, like
CAPM (which of course has been scrutinized extensively over the years), or much later through the
application of risk measures, as pointed out by this author [3] and recently by De Giorgi et al. [5].
The theory of portfolio separation is still a topic for research, see e.g. Schachermayer et al. [I2], much
in the spirit of [I] although using modern probabilistic tools.

The usual approach in the mean—variance setting, is to minimize variance given mean — which assumes
risk aversion. Under risk aversion, two fund separation in the continuous-time lognormal model was
obtained by Merton [7] by means of dynamic programming. The assumption of risk aversion can be
dropped: Instead of minimizing volatility given mean, Khanna and Kulldorff [6] choose to maximize
mean given the volatility, and are by remarkably simple methods able to remove the risk aversion and
completeness assumption and also allow for «no short sale» constraints on a subset of the portfolios,
as well as incomplete markets. They do however assume the existence of a risk-free investment op-
portunity, an assumption dropped herein. Furthermore, this paper shows that the Owen—Rabinovich
and Chamberlain results carry over to the continuous-time setting, assuming that the distributions
have a continuous-time analogue (i.e., that they are infinitely divisible).

This paper removes a few of the assumptions of [6], simplifying the approach, but admitting portfolio
restrictions, including cases without risk-free investment opportunity, as well as a wider class of dis-
tributions. Elliptical (a.k.a. «elliptically contoureds) driving noise distributions (cf. [8] and [2]) will
be covered — here, some generality will be left out by assuming that the numéraire is a constant (i.e.,
the discounting with a numeéraire is assumed done already). In order to stick to the continuous-time
setting, we shall also assume infinite divisibility, merely noting that the arguments can be copied
almost verbatim for discrete time if desired, as is well known in the literature.

0.1 ASSUMPTIONS AND NOTATION. Throughout the paper, boldface italics symbols denote vec-
tors, and their transposes by the " superscript. R will denote the reals. We will also frequently
suppress time-dependence of the parameters and choice variables. All stochastic time-differentials
(«dZ» etc.) will be assumed to be of the It6 (non-anticipative) type. A
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THE WEALTH DYNAMICS IN TRADED AND NON-TRADED MARKETS

1 The wealth dynamics in traded and non-traded markets

Let us first consider the usual model for a stock market with n risky investment opportunities {S;}
each satisfying an It6 (non-anticipative) stochastic differential equation with driving noise Z (see
however Remark :

dSi(t) = S;(t) [ dt + o dZ(t)] (1)

where the coefficients p; and o; are deterministic functions. We shall later treat both the case where
a safe investment opportunity exists and the case where it does not; assume for the moment that the
model’s numéraire exists as an investment opportunity with price Sp(¢) = 1 for all ¢, i.e. we assume
that we work with discounted figures. We remark that discounting accounts for the common additive
risk component found elsewhere in the literature, e.g. the y in [I1, Theorems 1 to 3].

We form a portfolio from the investments: If at time ¢ one has v;(¢) units of investment 4, then the
market value of the portfolio is > v;(¢)S;(t). In discrete time, the self financing condition says that
the change in the market value of the portfolio should come from changes in the prices, so that change
in wealth should be Y v;(t)(S;(t + h) — S;(t)) for h > 0. The analogous requirement can be taken
as a definition of a self-financing portfolio in our continuous-time setting, i.e. wealth fluctuating as
> v;(t) dS;(t); however, from our wealth we will also deduct an amount for consumption. Letting
C(t) be the (discounted) cumulative net consumption up to time ¢ and assume that the portfolio is
self-financing apart from the consumption, we have that wealth at time ¢ is X (¢) = > 1,5:(¢), and
developing according to
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(sum from ¢ = 1 since we consider discounted figures), so that
dX(t) =u' [pdt+ X dZ(t)] — dC(t) (2)

where X has rows {o;' } and our control u = wu(t) measures the value held in the risky investment at
time ¢ (see Remark for the issue of jumps to zero); the amount invested safely will be X —u'1.

As mentioned at the beginning of this section, the above is the canonical model for a (frictionless)
traded market. For an insurance premiums and claims model, on the other hand, a simple model is
as follows: For each distinct policy or pool i of which the insurer is responsible for a fraction &;, the
insurer will get a discounted premium income flow rate &;u; but be exposed to losses; we assume that
discounted cumulative losses evolve according as —&;0;" dZ(t). In this case we do not need the self
financing concept; we simply assume that at each time ¢ the insurer can choose §; freely, i.e. what
contracts to undertake and how much of each. Then we arrive at directly (no self financing concept
invoked) but with the interpretation that dC represents dividend flow from the insurance company
and that u; = &;.

We see that both the «traded market» model and the «insurance» model lead to dynamics of the
form . However, a stock and an insurance contract are different in some aspects. By limited
liability, a stock price model should not admit negative values, implying that o;; dZ; should almost
surely not jump by a factor less than —1. An insurance contract, on the other hand, should with
positive probability lead to losses for the insurer — and there is no reason to assume this lower bound
on the jumps. We will take as our model assumption. Due to previous feedback to the author,
it is expressedly emphasized that limited liability is not assumed — rather, it does for some of the
distributions treated herein, follow from the model.



STOCHASTIC DOMINANCE AND MEAN-VARIANCE EFFICIENCY IN THE GAUSSIAN CASE

1.1 REMARK. Taking (2|) as assumption imposes some interpretations for the event where prices hit
zero. The basic model suggests that from then on, this investment opportunity will be dead and
gone. However, is only compatible with the opportunity being instantly reborn with same dynamics
and nonzero price (for example, modelling the case of catastrophe bonds which are rendered worthless
at a stopping time, but where new bonds are immediately issued). The alternative interpretation —
that the number of investment opportunities changes as price hits zero — is shown by this author [4]
to disrupt the portfolio separation property in some cases. Notice however that prices will not hit
zero unless there is a point probability for a jump by a factor of —1. A

2 Stochastic dominance and mean-variance efficiency in the
Gaussian case

Consider the model and assume Z is a standard Brownian motion; write M := YRX T for the
volatility matrix. The concept of mean-variance efficiency seems to first to have occured with de
Finetti in 1940, see [9]; in its well-known conventional form, it focuses on minimizing variance for
given mean. For our purposes, it turns out more convenient to maximize mean for given level of
variance, even though it may sometimes require an additional fund (take for example the case where
all risky investment opportunities have zero-mean returns; then all risk averse agent will choose only
the safe investment, but risk seekers may not). Drift maximization is the approach of [6], and we shall
use a similar argument (even in subsequent sections, where distributions may fails integrability).

Let us for the moment proceed intuitively. Up to now, we have not specified whether the agent is free
to choose u. Let us assume that w is required to be predictable and for each ¢ belong to some given
closed set U. The mean-variance optimization problem — or rather, «drift-volatility» in a continuous
time model — now becomes:

maxu' p subject to u' Mu = Q2. (3)
uelU

Now assume that we are given some strategy (C,u) = {(C(t),u(t))}+. Let for each ¢ u*(t) solve (3
for Q? = u' (t)M(t)u(t). By construction, this will yield higher drift at the same volatility. Now
define C* by

dC*(t) = dC(t) + (w*(t) — w(t)) " p(t) dt

and assume C* € U. Compare the two strategies (C,u) and (C*,u*). By definition, the (Ito)
stochastic integral is a limit of sums

> ulta) (pltars — ta + E(ta)[Z(tasr) — Z(ta))). (4a)
d

Each (d-)term has a conditional univariate Gaussian distribution with thus uniquely determined by
mean and variance. Passing to the limit, we therefore have that there exists a real-valued standard
Brownian motion Z such that

w'ydz 2 Qdz 2u'ydz (4b)

where «2» denotes coincidence in probability law. Now consumption will possibly depend on past
wealth, so let us for the moment introduce the notation C(t) = F(Xs<;) to express this depen-
dence. Note in particular that F' corresponds to the given (C,u) strategy, not the (C*,u*) strat-
egy. Corresponding to the strategy (C*,u*), consider the following fictious modification of the
wealth-consumption pair (X*,C*): we still withdraw dC* from our wealth, but only dF(X},) =

dC* — (u* —u)" pdt is actually consumed, while the remaining (nonnegative!) portion (u* —u)" pdt



THE ASSUMPTIONS NEEDED

is thrown away. Thus the actual wealth-consumption pair (X*, C*) is replaced by (X*, F(X*)), which
yields:

(dX*(1),dF(X}<,) = (w pdt +u*T X dZ — dC*, dF(X},))
=@u'pdt+u ' ¥dZ - dF(X},),dF(XI,)) (4c)

2 (u pdt +u' £ AZ — dF(X,<), dF(X,<y))

if (X*, F(X*)) 2 (X,F(X)) up to time t, so then (X*, F(X*)) 2 (X, F(X)) up to t + dt, hence
everywhere. More rigorously, equivalence in law up to time ¢4 for the Riemann sum approximation
implies equivalence in law up to time ¢44; and thus everywhere; then pass to the limit.

This stochastic dominance argument shows that the strategy (C*,u*) is just as «good» as (C,u)
(heuristically, at the moment, assuming free disposal — in the next section, preferences will be assumed
ordered). Now if all agents use such a u*, we will have portfolio separation: Let us see what happens
if w is restricted to a cone U with vertex at the origin (and the market is arbitrage-free.) Let the
vector f solve problem for the particular value @@ = 1. Consider an arbitrary strategy (C,w) with
u(t) taking values in wu; then the strategy (C*,u*) defined by
1/2
() = [u(®) M(tu()]? f (52)
dC* = dC(t) + (uw*(t) — w(t)) " p(t) dt (5b)

dominates (C,u) in the sense of , and by the cone assumption, u* does take values in U. But
in f is a fixed vector common to all agent — which is (monetary) two fund separation, the other
fund being the safe opportunity.

3 The assumptions needed

We shall see what assumptions we need for to make the argument of the previous section entirely
rigorous. Let us note that we do not assume existence of an optimal strategy. In return, we have to
stick to a slightly weaker concept of portfolio separation than usual, but in the presence of an optimal
strategy, it coincides with the usual definition:

3.1 DEFINITION (m fund separation). Fix U. We shall say that we have m fund separation (relative
to U) if there exist m funds independent of wealth such that for each admissible (consumption,
portfolio) pair there is one which is (weakly) preferred and whose portfolio consists of the m funds. A

We note that we will frequently consider U’s that not all agents can satisfy. For example, an agent
with net debt cannot possibly own a positive position in all investments (including the safe if it exists.)
Therefore separation must be considered only within the class of agents for which the U applies. See
however the last part of Section [4]

3.2 ASSUMPTIONS.
(a) Non-anticipativity. The strategies should be predictable and admit unique solution to .

(b) Weak greed. Preferences are assumed to be compatible with first-order stochastic dominance;
i.e., they should form a partial ordering on the (wealth, consumption) pairs such that (X*, C*)
is (possibly weakly) preferred to (X, C) if

(X*,C") Z (X,C +/ cdt) for some predictable ¢ > 0.

(c¢) Cumulative consumption must not covariate with Z, i.e. in terms of It6 differentials we require

dCdZ = 0.



THE ELLIPTICAL CASE

(d) Existence of some admissible strategy.

(e) Probability distributions must permit the construction ().

3.3 REMARK. We make a few remarks on the assumptions. For the greed assumption @7 we
note that it covers expected increasing utility, including bonus schemes with call option or binary
option structure; also it covers risk measured by quantiles (value-at-risk or ruin probability), and a
wide range of lexicographical orderings. We note that we may restrict the consumption processes
even further than merely — e.g. by imposing lower boundedness or nonnegativity on C or its
growth rate (time-derivative) — but we must for each admissible C' admit the C'+ [ ¢d¢ construction
in (]ED (for given law of the wealth process). The restriction is still a generalization of the usual
assumption that consumption rates are positive; we do allow for e.g. non-financial income, but anything
which covariates with the market, must be part of the market model. Regarding existence: We
obviously need an admissible strategy, but we shall not assume any compactness needed for optimum
to exist. Indeed, in the Gaussian case (where prices are continuous), if an increasing utility function
is concave—convex—concave, then on the convex part one will want to inflate to infinite volatility until
hitting the convex hull. As for the probability laws, we used in Section [2| the property that the
zero-mean normal distributions constitute a one parameter family which is closed not only under
convolution, but under suitable linear combinations as well. The elliptical (also known as elliptically
contoured) distributions form a suitable generalization in the case where we allow for arbitrary linear
combinations, i.e. short sale permitted. If we only work with positive linear combinations, then the
family of a-stable distributions (elliptical or not) does permit the construction. Using jointly a-stable
distributions we can repeat the coinciding law argument in an entirely rigorous manner subject to
skewness and index of stability. Under the fairly mild assumptions [3.2] every agent is a drift-volatility
optimizer in the Gaussian case: in the non-Gaussian case, there will essentially only be a different
volatility measure, except for the oddball skew Cauchy distribution. A

For completeness, we give a few basic properties of the distribution classes in question.

4 The elliptical case

Following [8, Definition (a)], we recall that an elliptical, also known as an elliptically contoured R"-
valued random variable Y is one for which the characteristic function separates into

Elexp(iu'Y)] = exp(iu' d) ¥(u' Mu) (6)

where d is a vector and M is a positive definite matrix. If X' is invertible, and Y is an increment
of Z satisfying this definition with 0 and R for d, M respectively, then we will have Y elliptical:
Elexp(iu'Y)] = U(u' Mu), with, again, M = YRX 7. Since we have drift in the model, we can
incorporate d in this drift term, and assume it to be zero. We say that the distribution is elliptical
about the origin.

From the definition of ellipticity it follows that all linear combinations — which translates to instanta-
neous returns less drift, when u being interpreted as portfolio — are univariate elliptical, characterized
by the quadratic form w' Mu. In addition we have drift, which in our case becomes u' u. For the
construction , it therefore suffices that the portfolio u maximizes drift u' p given w' Mu: Just like
in , the Ito integral is now the limit in probability of sums of terms of the form

u' (t)[Z(tar) — Z(ta)) (7)

which is now a drift term plus a real-valued random variable elliptically distributed about the origin.
For given value of the quadratic form, then and follow with the modification that Z now is
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a Lévy motion with (necessarily infinitely divisible and) elliptic increments.

For the result, we notice that we can restrict the portfolio weights to a quadrant (e.g. forbidding short
sale), cone, double cone, or more generally a family of half-lines from the origin:

4.1 THEOREM (Two fund separation). Assume the dynamics to follow (2, with the increments of
Z being elliptical about the origin and infinitely divisible. Assume precisely one of the following two
restrictions U on the portfolio vectors u:

e U is a family of half-lines from the origin, or
e U={u; u'l= X} (ie., no safe investment opportunity).

Then we have two fund separation if there is no arbitrage.

Proof. The first case follows as in section [2} Let f be the vector which solves the problem of max-
imizing drift subject to w' Mu = 1. Then for any Q@ > 0, Qf € U and maximizes drift subject to
u' Mu = Q% Now for any given strategy (C,u), observe that the pair (C*,u*) constructed by
is preferred by Assumption . As for the case of no risk-free investment opportunity, note that
this corresponds to the constraint «' 1 = X. Consider the problem

maxu' g subject to w' Mu = Q?, w'l=X. (8)

Except the case where the two constraints form a singleton (the point m)ffllM ~11, which will be
covered by the formula to follow), we have the constraint qualification satisfied, and the Lagrange
first-order condition reads

p=2AMu + A1 (9)

Since M is invertible, we have u separating into a linear combination of the two funds M ~!'p and
M~11, provided that A # 0. Should A vanish, then g must be a multiple of 1, in which case the
maximization degenerates. Then choose m)ffllM ~'1 and any nonzero fund orthogonal to 1. Then
repeat the construction (5)). O

4.2 REMARK. The %M 11 vector is the «minimum variance portfolio» in the classical case.
The «nonzero fund orthogonal to 1» is then pure volatility, in the sense that it does not contribute
to expected return, and is usually not stated in the literature. It is needed in our case, since we have
not assumed risk aversion. For similar reasons, we cannot rule out the need for an additional fund if
there is an arbitrage opportunity (corresponding to semi-definite M): the arbitrage portfolio funded
by borrowing, both of which will then be scaled to infinity, and then a fund in case volatility is desired.

A

We can cover no-borrowing constraints, or even different lending and borrowing interest rates, at the
cost of additional funds. Let the «€» symbol denote either < or =, and assume that we are given
restrictions of the form

uTajézj, ji=1,...k (10)

where the a; are common to all agents, but the z; may be individual. The Lagrangian associated to
the static optimization problem now becomes

L:uT(ufZ)\jaj)fAuTMu (11)
J
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If the constraint qualification fails, then analogously to Theorem [£.I] we must be at the singleton where
the ellipsoid is tangent to the convex polyhedron defined by the linear constraints. This case will be
a limiting case in (Q and does not require special treatment. If the Lagrange conditions hold, we have

Au= M =Y Nay) (12)

where the right-hand side is spanned by at most k£ 4+ 1 vectors, i.e. at most k£ + 2 funds. What
remains is the case A = 0, for which the «optimal» choice must be reserved to fulfilling admissibility,
with drift being constant. In this case, observe that the vector M~y (which is one vector in the
expansion , and it is redundant due to linear dependency) is minimizing the quadratic for given
drift. An additional fund orthogonal to p then suffices, and we still only have k£ + 2 funds. We have
shown:

4.3 THEOREM (k + 2 fund separation). Assume the dynamics to follow , with Z being elliptical
about the origin, and the portfolio constrained to satisfy . Then we have k + 2 fund separation
(k + 1 funds if forbids a risk-free opportunity).

In order to accommodate different rates for lending and borrowing, corresponding to u'1 being <
resp. > than X, we simply assume an interest premium r(K) on K = u'ay (K may be individual,
and so may even 7(k)) — the obvious choice is ag = 1, but mathematically that is just a special case.
The result is

4.4 THEOREM (Different interest rates require one more fund). Consider the setting of Theorem |[4.3)
but with individual interest rates, possibly depending on ay. We then have k + 3 fund separation (in
particular, 3 fund separation if there are no constraints in )

Proof. For each K, the agent will want to maximize drift w' (u—r(K)ag) = —Kr(K)+u' u, subject
to augmented with u'ay = K, which gives just another fund with K-dependent Lagrange
multiplier. O

4.5 REMARK. Note that the extra fund is needed also if the interest rate is fixed per agent but
varies between them. Note also that the generality covers leverage constraints applying to some of
the agents (e.g., if only some of the agents are allowed to borrow). A
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