UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Home assignment: **ECON5160/9160 – Stochastic Modeling and Analysis**, spring 2011.

Handed out: May 31, 2011 at 09:00

To be delivered by: June 3, 2011 at 14:00

Place of delivery: Department office, 12th floor

Further instructions:

• The questions are in English, but you can give your answers in English, Norwegian, Swedish or Danish.

- The home assignment will be marked and the scale for the mark will be **A** (best) through **E** for passes, and **F** for fail.
- After completion, please hand in 2 two copies of your paper to the address given above. The papers must not bear your name, but the individual examination number, which you can find in your studentweb.
- In addition, you must fill in the **declaration on compliance with the rules**, available <u>at the course website</u>. Your answer must fill the formal requirements, found at http://www.sv.uio.no/studier/ressurser/kildebruk/ (Norwegian) or http://www.sv.uio.no/english/studies/resources/sources-and-references/ (English).
- It is of importance that your paper is delivered by the deadline (see above). Papers delivered after the deadline, will not be assessed nor marked.*)
- All papers must be delivered to the place given above. You must not deliver your paper to the course teacher or send it by e-mail. If you want to hand in your paper **before** the deadline, please contact the department office on 12th floor.

*) The rules for illness during exam also applies for the home exam. Please see http://www.sv.uio.no/english/studies/admin/exams/postponed-exam/index.html for further details.

ECON5160/9160 (Stochastic Modeling and Analysis): Exam spring 2011, May 31st – June 3rd

- There are 3 pages of problems, in addition to the cover note (1 page) and declaration form (separate PDF document).
- All answers must be justified. Show your math; reference to e.g. computer calculations, is not sufficient justification (but you are allowed to use such tools for your own verification).
- For further information, refer to the cover note.

Problem 1 Let $d \in [0,1]$ and c = (1-d)/4. A Markov chain has transition matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & d & c & c & c & c & c & 0 & 0 \\ 1 & 0 & .1 & .2 & .3 & .4 & 0 & 0 \\ 2 & 0 & .2 & .3 & .4 & .1 & 0 & 0 \\ 0 & .3 & .4 & .1 & .2 & 0 & 0 \\ 4 & 0 & .4 & .1 & .2 & .3 & 0 & 0 \\ 5 & 0 & c & c & c & c & 0 & d \\ 6 & 0 & c & c & c & c & d & 0 \end{bmatrix}$$

- (a). Determine, for each value of $d \in [0, 1]$ the positive recurrent state(s) (if any), and the null recurrent states (if any).
- (b). Determine, for each value of $d \in [0, 1]$, the communication classes.
- (c). For what if any value(s) of d will the Markov chain be regular?
- (d). Let $\boldsymbol{\pi} = (\pi_0, \pi_1, \dots, \pi_6) = (0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0)$. For what if any value(s) of d will $\boldsymbol{\pi}$ be
 - i) a stationary distribution?
 - ii) a limiting distribution?
- (e). Assume that the Markov chain starts in state 6. Determine, for each value of $d \in [0, 1]$ for which state 6 is transient, the expected time until the Markov chain leaves the communication class state 6 belongs to.

Problem 2 Throughout this problem, Y will be a birth/death-process with state space $\{0,1,2\}$. The intensity of an upward jump from state $i \in \{0,1\}$ will be 2-i. The intensity of a downward jump from state $i \in \{1,2\}$ will be $\frac{1}{2}i^2$.

- (a). Write down
 - i) the generator,
 - ii) the Kolmogorov backward equation (i.e. equation system) and
 - iii) the Kolmogorov forward equation (i.e. equation system) associated to Y.
- (b). In the long run, what fraction of the time will Y spend in state 1?

Problem 3 Throughout this problem, M(t) will be a martingale in continuous time, starting at M(0) = 0, τ will be first time for which $|M| \ge 1$, and M satisfies $\mathsf{E}[\big(M(t)\big)^2] < \infty$ (for all t), and $\mathsf{E}[\tau^2] < \infty$.

- Let $p = \Pr[M(\tau) \ge 1]$.
- (a). Show that p = 1/2 if M is continuous.
- (b). In this part, assume that M has no downward jumps. Decide whether this condition
 - implies that $p \ge 1/2$, or
 - implies that $p \leq 1/2$, or
 - is insufficient to conclude whether $p \leq 1/2$ or $\geq 1/2$.

Problem 4 Throughout this problem, let T > 0, r > 0 and $k \ge 1$ be given constants. Consider for time $t \in [0,T]$ a frictionless arbitrage-free market consisting of one investment opportunity whose price at time t is deterministic and equal to e^{rt} , and furthermore an investment opportunity with stochastic price S(t) at time t, with S(0) = 1. Consider three Arrow-Debreu securities with arbitrage-free prices as follows:

- security #1 pays 1 if $S(T) \ge k$ (and 0 otherwise), and has price c_1 at time 0,
- security #2 pays 1 if $S(T) \leq 1/k$ (and 0 otherwise), and has price c_2 at time 0,
- security #3 pays 1 if $k \ge S(T) \ge 1/k$ (and 0 otherwise), and has price c_3 at time 0.
- (a). Find c_1 for the case when

$$S(t) = \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B(t)\right)$$
 (gBm)

where $\mu \geq r$ and $\sigma \neq 0$ are given constants, and where B(t) is standard Brownian motion starting at B(0) = 0.

(b). It is a fact that $c_1 + c_2 + c_3 = e^{-rT}$ when S is given by formula (gBm) above. However, there are other cases where there is inequality. Let k = 1 and find a suitable condition on the process S for which $c_1 + c_2 + c_3 \neq e^{-rT}$, and decide whether the sum is then $> e^{-rT}$ or $< e^{-rT}$. Make sure that your condition does not imply arbitrage opportunity. For part (b), you are free to modify the set-up to a single period problem with trading only at time 0 if you prefer so.

Problem 5 Let $\mathbf{X}(t) = (X_1(t), \dots, X_n(t))^{\top}$ satisfy the stochastic differential equation

$$d\mathbf{X}(t) = (\mathbf{b}(t) - \mathbf{A}\mathbf{X}(t))dt + \mathbf{\Sigma} d\mathbf{B}(t), \qquad \mathbf{X}(0) = \mathbf{x}$$
(1)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{n \times m}$ are matrices with constant entries, $\mathbf{b}(t)$ is a deterministic function taking values in \mathbb{R}^n , and \mathbf{B} is m-dimensional standard Brownian motion.

- (a). Solve equation (1) (i.e.: write \mathbf{X} as a function of \mathbf{x} , an integral wrt. t and an integral wrt. the Brownian motion, but do not try to evaluate all the integrals explicitely).
- (b). Simplify as much as possible if $\mathbf{b}(t) = \mathbf{A}\mathbf{q}$, where \mathbf{q} does not depend on t.

In parts (c) and (d), assume that \mathbf{X} satisfies (1), with $\mathbf{b} = \mathbf{A}\mathbf{q}$ as in (b), and

$$\mathbf{A} = \alpha \mathbf{I} + \beta \mathbf{C},\tag{c&d}$$

where C has the property that $C^2 = \gamma C$. Here, α , β and γ are constant numbers.

(c). Show that

$$e^{\beta \mathbf{C}} = \mathbf{I} + \frac{e^{\gamma \beta} - 1}{\gamma} \mathbf{C}.$$
 (2)

(d). Use (2) to simplify the solution of (1) as much as possible. You are allowed to use equation (2) regardless of whether you managed to prove it. (*Hint:* you can use without proof the fact that $e^{\mathbf{K}+\mathbf{L}}=e^{\mathbf{K}}e^{\mathbf{L}}$ is true whenever the matrices commute, i.e. whenever $\mathbf{KL}=\mathbf{LK}$.)

Now drop the (c&d)» condition, and consider instead for the rest of the problem, the system of stochastic differential equations for $\mathbf{X} = (X_1, X_2, X_3)^{\top}$:

$$dX_1(t) = r_1(X_2(t) - X_1(t))dt + \boldsymbol{\sigma}_1^{\top} d\mathbf{B}(t)$$

$$dX_2(t) = r_2(X_3(t) - X_2(t))dt + \boldsymbol{\sigma}_2^{\top} d\mathbf{B}(t)$$

$$dX_3(t) = r_3(m - X_3(t))dt + \boldsymbol{\sigma}_3^{\top} d\mathbf{B}(t).$$
(3)

where all three r_i are > 0, and where **X** starts at **X**(0) = **x**.

(e). Write equation system (3) on the form (1), and show that when all the r_i are distinct (i.e. $r_1 \neq r_2 \neq r_3 \neq r_1$), then **A** has eigenvectors (*right* eigenvectors, not left!)

$$\mathbf{u}_1 = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}^\top, \quad \mathbf{u}_2 = \begin{pmatrix} 1, & 1 - \frac{r_2}{r_1}, & 0 \end{pmatrix}^\top, \quad \mathbf{u}_3 = \begin{pmatrix} 1, & 1 - \frac{r_3}{r_1}, & (1 - \frac{r_3}{r_1})(1 - \frac{r_3}{r_2}) \end{pmatrix}^\top.$$

(f). Let **U** be the matrix with columns \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 . Find deterministic real-valued functions $d_1(t)$, $d_2(t)$, $d_3(t)$ such that whenever all the r_i are distinct, we have

$$e^{\mathbf{A}t} = \mathbf{U}\boldsymbol{\Delta}(t)\mathbf{U}^{-1}, \quad \text{where } \boldsymbol{\Delta}(t) = \begin{pmatrix} d_1(t) & 0 & 0\\ 0 & d_2(t) & 0\\ 0 & 0 & d_3(t) \end{pmatrix}.$$
 (4)

(You are not supposed to calculate \mathbf{U}^{-1} .)

- (g). Assume that Σ is the identity matrix. Use your diagonalisation (4) to simplify the solution \mathbf{X} of (3). Your formula should not include \mathbf{A} explicitely. (Again, you are not supposed to calculate \mathbf{U}^{-1} .)
- (h). Again, consider equation system (3) written on the form (1), but assume now that $r_1 = r_2 = r_3$. Is the matrix **A** now diagonalisable?