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Introduction

1 Introduction

This compendium is a supplement to Taylor and Karlin (1998) which is used in ECON5160
Stochastic modeling and analysis as an introduction to dynamic stochastic modeling useful
in theoretical economy and econometrics. Reference is made to Taylor and Karlin (1998)
throughout in the format TK (section/page/...). There are many good textbooks on prob-
ability theory. In addition to those mentioned in Taylor and Karlin (1998), Grimmet and
Stirzaker (1992) provides a good and condensed read. Stokey and Lucas (1989) and many
other books in economics provides theory and application of probability theory. Wikipedia is
useful, and mostly sound for probability theory.

The first Section is a warm up of some calculus on continuous distributions in the context
of climate change. Then some material on specific continuous distributions. In the examples
to follow I have given my own twist to stuff I have picked up in seminars and papers. The
Section on Markov chains with continuous state space and MCMC (Markov Chain Monte
Carlo) is included because it really is a beautiful and very influential bit of stochastic analysis
— Bayesian methods are in ever more use, also in econometrics, and empirical Bayesian analyzes
is often based on running an MCMC. The theory of stochastic differential equations and Ito
integration is briefly sketched. The final Section is on some matrix theory. Eigen- and singular
value decomposition is useful in many contexts. It provides e, the anti-log of a matrix A
to be calculated in most cases. This so-called diagonalization is useful for solving systems of
differential equations, also stochastic differential equations.

This compendium should be read as an invitation to further reading, and hopefully making
a jump into the deep water of stochastic modeling and analysis.

2 Is expected damage due to global temperature rise infinite?

Martin Weitzman (2008, 2009) argues that uncertainty with respect to a key parameter in
climate models is so big that levels leading to extreme global temperature are improbable,
but not more improbable than making expected damage infinite when the dis-utility of global
warming is at least as convex as squared temperature rise. He puts up a very simple de-
terministic climate model with a closed form solution. The trajectory of global temperature
depends on a few parameters, one of which is the positive force of feedback from tempera-
ture to radiation. The higher the global temperature, the more of the solar radiation will
be absorbed by the earth (oceans, landmasses, atmosphere), and then in turn the higher the
global temperature. We shall have a look at his deterministic model, and the feed-back fac-
tor. The uncertainty distribution for this parameter is then transformed into an uncertainty
distribution in limiting global temperature. We shall also have a look at expected discounted
damage due to global temperature rise, and argue that this is infinite. In this simple model
the expected damage turn out infinite if man-made greenhouse gases are not entirely removed
from the atmosphere.

Let

R(t) = additional (to pre-industrial) solar radiation, and

T(t) = global temperature (degrees Celsius), increase from pre-industrial level at time ¢
measured in years since the industrial revolution.

Global temperature is partially regarded as a sink, determined by the differential equation

9) =~ PoR(1) - T) (1)
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where
¢ = aggregate thermal inertia (overall planetary capacity of the oceans to take up heat)
Ao = a feedback-free constant.
The radiation is in turn affected by temperature according to the equation

R() =F @)+ 1(0) )

where

F (t) = exogenously imposed additional radiative forcing (due to greenhouse gas emissions
etc.)

f = feedback factor.

With no extra forcing, F' = 0, T'(t) = 0 solves the equations when the initial condition is
T(0) = 0. Weitzman assumes that due to emission of greenhouse gases the additional radiative
forcing grows to a level I according to the differential equation

d
SF(t) = 6 [F - F(1) 3)

where 8 > 0 is a parameter reflecting how fast greenhouse gases are emitted. From the initial
condition F'(0) = 0 it is clear that

Ft)=F (1 - e*5t> . (4)

Substituting (2) and (4) in (1),

%T(t) _ ¥ (1-e?) - %T(t).

With o = % the solution, satisfying the boundary condition, is

)\OF —at )\OF —515 —at
T(t) = 1—e@ —_— —e @ 5
(*) l—f( € )+c(ﬁ—a)(e € )’ (5)
which may be written
_ )\0 Fal 1 —pt —at
T(t)—l_fF<1+5_a<ae — fe ) . (6)
The asymptotic global temperature is thus in this model
Mo F
T = .
(o) = 125

Global warming will be strong if the feedback coefficient f is close to 1.

Weitzman (2008) admits that his model is extremely simple, and is not by far doing full
justice to the knowledge about climate processes possessed by present day climate researchers.
He holds however that his model is useful in that it captures the crucial feed-back mechanism
from temperature to radiation. He further holds that simple models are useful to "see the
forest from the trees", provided that they bring out structural aspects of reality of importance.
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The feed-back coefficient f is hard to estimate. Weitzman (2008) argues that current knowl-
edge is incapable of bounding f away from 1 with certainty. He treats the uncertainty con-
cerning f in terms of a probability density ¢. His results are based on ¢(f) =0 for f > 1 and

¢'(1) = —b < 0. Under this condition, F {T (00)2} = fol {1\2—?]2 o(f)df = oo, and E [T(o0)] is
finite. With a damage function at least as convex as the quadratic, the expected long term
damage to humankind from continued greenhouse gas emissions is infinite under Weitzman’s
condition.

Weitzman (2008) argues that reasonable discounting rates can be represented by a proba-
bility density p on the positive axis such that p’(0) > 0. He uses this last property to conclude

that

/ooo E UOOO e—TtD(T(t))dt] p(r)dr = oo,

where expectation is with respect to f or alternatively «. This result is a bit tricky to obtain.
By squaring (6) and integrating,

7\ 2 2 (2% — L ‘”2—25a+2>
o0 AF ]. ( ' « 7") ( T (0% T o+
/ T (T (1)) 2t = ( 0 > 1, 2\B ) |\ 8+ i 2ot

0 o r 08—« (B —a)

Weitzman (2008) shows that the expectation with respect to r and « of this is infinite when
the joint density is proportional to arat the origin. (I have struggled with this but am at a
loss.)

This result is indeed troublesome. Weitzman (2008) argues that this result gives strong
reasons for preparing for a worst case by researching and establishing an international frame
for curtailing temperature rise by fast geo-engineering. Some quotes: "[...] the fat upper tail
of the PDF of climate sensitivity lends greater urgency to curtailing GHG emissions |...| a
large increase in expected welfare might be gained if some relatively benign form of fast geo-
engineering [injecting sunlight-reflective particulates or aerosols [...| into the stratosphere| were
deployed in readiness to rapidly derail severe greenhouse heating — should this contingency
materialize. [...] as well as there being a strong policy argument that now is the time to learn
a lot more about fast geo-engineering — there is an additional strong policy argument that
now is also the time to start thinking seriously about an international framework governing
the use of this option."

Is Weitzman right? Note that infinite expected dis-utility results under the conditions

e the dynamic model is OK, but of course a gross simplification
e the dis-utility is at least as convex as the quadratic

e greenhouse gas emissions leads to a long-term increase in greenhouse gas in the atmo-
sphere, F' > 0.

The last assumption is perhaps the most interesting. If the two first hold water, it means that
we have to move towards zero green house gas emissions in order to force the limiting level
back to its "natural" pre-industrial level, F' = 0, if physically possible. A model based on this
assumption, rather than that of F' — F > 0 should have equation (3) replaced by an equation
making F(t) have a uni-modal trajectory.
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The first assumption may be questioned. It is possible that the linearity in the feed-back
(2) is what causes the expected tragedy. With non-linear feed-back, say with f increasing in
T, the global temperature might stabilize at a lower level making expected discounted damage
finite. See Problem 2.

Another consequence of the analysis, assuming the first two conditions, is that research
should be intensified to improve our knowledge about the feed-back factor f. Along with
the American Statistical Association, I believe that climate research would improve if statis-
ticians were more engaged in this vital and fascinating area of research much more widely
than what is presently the case, see The American Statistical Society. The characterization
and quantification of uncertainty is not an easy matter, but sometimes a matter of crucial
importance.

3 Some continuous distributions

The gamma distribution

The gamma distribution has its name from the gamma function,

F(a)—/o e x .

The symbol T" is the Greek counterpart to the Latin G.
The gamma density function is defined for > 0 by
e pp———— (7)
BT ()
The parameters a and (§ are called the shape parameter and scale parameter, respectively.
The mean of this distribution is a8 and the variance is af?. Some authors, among them
Taylor and Karlin (1998, page 38) (TK), use the rate parameter A = 1//3 instead of the scale
parameter. The gamma function is briefly discussed in TK (1.6 (Section 6, Chapter I)).

The gamma distribution is skewed for small values of the shape parameter. It is more and
more symmetric as the shape parameter increases. Figure 1 shows five gamma densities. In
the limit, as a — oo and 8 = o/\/a — 0 with the variance o2 fixed, the gamma distribution
tends to a normal distribution. Its mean is then p = oy/a.

The Gamma cumulative distribution function is defined for x > 0 by the integral

. _ 1 N a—1_-—u/pB
G(az,a,ﬁ)—m(a)/o u* e P .

The gamma distribution has been found useful in many applications. This is due to its
ability to model skewed distributions, its nice mathematical form, its theoretical properties
and its relationship to other distributions. One property is that if X; is gamma distributed
with parameters ; and 3 (the same scale parameter!) and independent, X = Y | X, is
gamma distributed with shape parameter & = )" | a; and scale parameter §. Thus, by the
central limit theorem, the gamma distribution approaches the normal distribution as the shape
parameter increases.

When a = 1, the gamma distribution is called the exponential distribution. When g = 2 and

when a = %I/ where v is an integer, the gamma distribution is called the chi-square distribution


http://www.amstat.org/news/climatechange.cfm
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Figure 1: Gamma densities with shape k = a and scale parameter § = 8. Wikipedia!

with v degrees of freedom. This distribution does consequently have mean v and variance 2v.
When Z has a standard normal distribution, Z2 has a chi-square distribution with v = 1
degrees of freedom. This relates the gamma distribution to the normal. The gamma function
is readily computed in the system R and in other mathematical and statistical software, and
it is easy to simulate gamma distributed data.

Sums of independent gamma distributed variables with the same rate (or scale) parameters
are gamma distributed with the same rate parameter, and with shape parameter equal to the
sum of the component shape parameters.

The gamma function T' (o) = fooo ez dz is defined for positive real numbers a. By
partial integration,

Fa)=(a-1)T(a—-1) a>1. (8)

Since I' (1) = 1, I'(n) = n! for n a natural number. The gamma function interpolates the
factorial function! In Problem 4 6 you find I'(1/2) = /7. Figure 2 sketches the gamma
function over(0.2, 4).

The gamma distribution is conjugate to the Poisson distribution in the following sense.
When X given A is Poisson distributed with mean A, and X is gamma distributed with shape
parameter « and scale parameter §, the the conditional distribution of A given X is gamma
distributed with shape parameter o + X and scale parameter 3/ (5 + 1). The joint density
(which is running over the natural numbers for X and the positive real numbers for \) is

actually proportional to
)\x+a71€f>\(1+1/ﬁ)

which again is proportional to the mentioned gamma distribution.

The beta distribution

The Beta distribution is defined for 0 < x < 1 by the cumulative distribution function

1 €T
F (z;a,b) = B(ab)/o w1 (1 —w)" ! du,
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Figure 2: The gamma function over the interval (0.2,4).

where B(a,b) = fol w1 (1 —u)* ' du is the Beta function with parameters a and b. Both
parameters are positive. Otherwise, the integral had been infinite. The Beta function satisfies
I'(a)L(b)

I'(a+b)’

where I' is the gamma function. Since the gamma function interpolates the factorial function,

and satisfies I'(a + 1) = al'(a), the beta function is related to the binomial coefficient for
integer-valued parameters:

B(a,b) =

<" * m) —(nt+m+1)""Bn+1,m+1)""
n

The density function for the beta distribution is
w1t (1 — )
B (a,b)
The parameters a and b are positive real numbers called shape parameters. The density is zero

outside the unit interval. When a = b = 1, the beta distribution is the uniform distribution.
Figure 3 shows three beta densities.

f(u;a,b) =

The mean of the beta distribution is

The beta distribution is obtained fromathe gamma distribution as “the broken gamma stick”:
When X and Y are independent and gamma distributed with the same scale parameter,
and with shape parameters a and b respectively, the quotient B = X/(X + Y) has a beta
distribution with shape parameters a and b. The common scale parameter has no effect on the
quotient, and the result holds whatever the scale parameter is.

The beta distribution is conjugated to the binomial distribution in the following sense. Let
the conditional distribution of X given P = p be binomially distributed with parameters n and
p, and let P have a beta distribution with parameters a and b. The conditional distribution
for P given X = z is then a beta distribution with parameters a + x and b+ n — .
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Figure 3: Three beta densities for (a,b) = (2,3), (5,1), (3,8).

The Dirichlet distribution

The beta distribution is a special case of the Dirichlet distribution, which is a multivariate
distribution of Y on the subspace of R” : Y > 0 and Y1 4 --- 4+ Y,, = 1 with density

fly = Dt +an) ﬁ o1,
[(ar)-T () L
Independent gamma variables of equal rate divided by their sum is Dirichlet distributed.
The Dirichlet is a natural distribution for a stochastic probability vector (non-negative and
summing to one). It is therefore in Bayesian analyses often used as a prior distribution for
the probabilities in a multinomial distribution. It is actually conjugated to the multinomial
distribution. It is obtained as “the multiply broken gamma stick”. Let X, be independent
gamma distributed with shape parameter a; and scale parameter o independent of j. Then

X,
Bi=—_9J9 j=1,---,v
’ Z?:l Xi
has a multivariate beta distribution with parameter vector (ai,--- ,a,). From the construc-

tion, marginal distributions have (multivariate) beta distributions. If v > 3, (Bj, B, B3) is,
for example, beta distributed with parameter vector (a1, as, as).
The Dirichlet distribution is conjugate to the multinomial distribution.

4 Tinbergen’s model for the formation of income distributions

Tinbergen (1956) sketch a theory of income distributions based on normal distributions of
skills in the labor supply and in the labor demand. These distributions will typically not
match, and in Tinbergen’s theory, income is used to ease the tension between demand and
supply of skills.
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A question closely related to Tinbergen’s is to what extent observed idiosyncratic income
risk can account for observed wealth, savings and consumption heterogeneity. The dynamic
economic model, proposed by Bewley (1986) and developed further in Aiyagari (1994), has
become a leading model to answer these and related questions.

The Aiyagari-Bewley economy is populated with an infinite heterogeneous population of
agents who are subject to uninsurable idiosyncratic income risks, and a constant mortality.
The income process follow an estimated Markov process for individual income realizations.
Since agents’ histories of income shocks are different, the model generates endogenous hetero-
geneity and equilibrium cross-section distributions of wealth, saving and consumption.

In the Aiyagari-Bewley model economies all risk is idiosyncratic, i.e. there is no aggregate
risk. Krusell and Smith (1998) extend the framework of Aiyagari-Bewley to ask how aggre-
gate uncertainty interacts with idiosyncratic risk to generate endogenous wealth, saving and
consumption heterogeneity.

Storesletten, Telmer and Yaron (2004) asks if individual-specific earnings risk can account
for the observed rise inequality by age. In order to answer this question the paper constructs
an overlapping generations general equilibrium model in which households face uninsurable
earnings shocks over the course of their lifetimes. Earnings inequality is exogenous and is
calibrated to match data from the U.S. Panel Study on Income Dynamics. Consumption
inequality is endogenous and matches well data from the U.S. Consumer Expenditure Survey.

Returning to the Tinbergen problem, consider first the case of inelastic demand for skills,
and skill being one-dimensional. Denote by S the skill on the supply side and D the skill
on the demand side. The skill demanded in the labor market has distribution represented by
D, which is N(up,c%). That demand is inelastic means that this distribution is fixed. The
supply of skill has distribution represented by S ~ N(ug, U?g), and this distribution adjusts
through the incentives of the income distribution to that of D. On a scale of additive utilities,
income, I, is assumed quadratic in skill,

1
uw(I(s)) =v+ s+ §>\252.

A mismatch between the skill demanded in a job and the skill supplied, has a negative utility,
quadratic in the mismatch. A person with skill s in a job that demands d will thus have utility

u(s) =v+ s+ %)\232 — %w(s —d)>.
Here, v and w are taken for given, while A\; and Ao will be determined in the economic
coordination process.

By translating s — s — pg, the quadratic utility is kept quadratic, but with different
coefficients in the transformed skill supplied. There is thus no loss of generality of assuming
us = 0, which is done.

The idea is that the income in monetary terms I is a function of s through the quadratic
form determined by the A-coefficients. Thus, with a logarithmic utility,

1
I(s) = exp <v + A\is+ 2)\232> .

If then Ay = 0, the income in monetary terms is log-normally distributed since S is normally
distributed.
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In equilibrium, this utility is maximized across the distribution. At equilibrium, u/(s) = 0:
AL+ Aes —w(s —d) =0.

The economic problem is to coordinate skills between supply and demand, and the equation
says that a person with skill s finds a job with demand d = s — (A; + A2s) /w. Thus, in
distributional terms,

AL+ XS = w(S — D) (9)

This equation determines the parameters A\; and Ay that specifies the income distribution.
For these coefficients given, S is thus a linear transform of D, which indeed is possible since
both distributions are normal. Taking moments on both side of (9),

A= —WUD,
M —w)lod = wlo?,.

There are two solution to the second equation,

)\2:w<1j:JD>.
os

Tinbergen considers the case with skill being two-dimensional. He solves the problem by
somewhat cumbersome direct reasoning. In passing, he notes that his equilibrium equations
have two solutions, but he gives no argument for his choice. The solution he quotes agrees
with the solution Ao = w (1 — Z—’;) . We will keep to this solution. When op = og, Ao = 0.
One argument for this solution is that the other solution makes Ao > w, and hence the
utility becomes convex in s rather than concave. This discarded solution will thus represent
a situation where suppliers minimize their utility when finding a job.

With the chosen solution, supply and demand of skill is coordinated according to the linear
equation

D =pup+ D,
gs

This equation does express more than a relationship between distributions. It should, per-
haps, have been phrased in lower case d and s, to highlight that it represents a mapping or
coordination between workers with skill s and jobs demanding skill d.

When op = og and the utility of money is logarithmic and the income distribution is
log-normal, In(I) ~ N(v,A\j0%). The larger the discrepancy in mean skill between supply
and demand at the outset, the larger is A; in absolute terms, and the more skewed is the
income distribution. If up = pug = 0, the income distribution collapses, and all have the
same income I = exp(v). As an example, consider Figure 4. As another example, consider
the skill distributions in Figure 5 which go together with the income distributions in Figure
6 when w = 1 and v = 0. Note the extreme skewness in income distribution when skills
are more dispersed in supply than in demand, Ao > 0, while in the opposite situation the
income distribution is virtually restricted to a finite interval, and it is less dispersed and more
symmetric (unfortunately, the line types do not match in the two figures).

A special case arise when the distributions of demand and supply are equally centered,
making A\; = 0, but with different standard deviations. If Ao > 0, the distribution is very
skewed with a long tail to the right. If, however, Ao < 0, the distribution is concentrated on
a finite interval, but is still skewed, see Figure 6.

10
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Figure 4: Income densities for w =op =05 =1, v=pug =0 and up = 0.1, 0.25, 0.50 and 1.
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Figure 5: Skill densities. Supply: ps = 0, 0g = 1. Demand: up = 0.5; op = 1.5 (solid line),
op =1 (broken line), op = 0.5 (dotted line).
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Figure 6: Income densities for A\ = —.5 and Ay = —.5 (solid line), A2 = 0 (broken line) and
A2 = 0.5 (dotted line).

5 Transition intensity and competing risk, income assimilation
of immigrants

In Norway and in many other countries, immigrants start out with less income than comparable
groups of residents. Let us use the term natives for those born in the country and immigrants
for those who have immigrated at some point in time. For simplicity, immigrants and natives
are equal with respect to age, education, sex and other stratifying variables. Immigrants are
assumed to have arrived at the same point in time, ¢t = 0. The immigrants tend to have less
human capital than the natives (language etc.) as measured by the native standards. Their
income will therefore tend to be less than that of the natives.

As time since immigration increases, the income distribution of the immigrants gets more
and more similar to that of the natives. This is termed income assimilation. It is of interest
to measure the rate of income assimilation. This is not an easy matter since many immigrants
emigrate, possibly back to their mother country. One might expect the rate of emigration
to be high when the income of the immigrant is unsatisfactory. A competing theory is that
immigrants are more prone to move back home when they have acquired a sufficient wealth.
With income-specific emigration, the income distribution of the immigrants that stay in the
country will have an income distribution affected both by the process of assimilation and
by the process of selective emigration. The purpose of this example is to find the structure
of the income distribution in a very simple speculative model for selective emigration and
assimilation. Borjas and Bratsberg (1996) discuss income assimilation and estimate effects for
a number of countries.

Let Y be a stochastic variable representing the income distribution of the natives, and let
X; correspondingly represent the income distribution of the immigrants after ¢ units of time
in the country. With no emigration, the assimilation model is

Xt = Oé(t)Y

In terms of the p-quantiles, y(p) and z;(p) of the two distributions, the model is z(p) =
a(t)y(p). The assumption is further that an immigrant that starts out with an income zy =

12
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ya(0) will follow the assimilation path x; = ya(t) throughout his stay in the country. The
assimilation profile a(t) is increasing from «(0) > 0 to a(oco) = 1. If immigrants represent a
positive selection with respect to income potential, one might have a(oco) > 1.

The emigration intensity (for immigrants), A¢, depends on current income. Let the cumu-
lative emigration intensity be

A(r;y) :/0 Aedt.

The expected fraction of immigrants at this income path that still are living in the country
at time ¢, and that choose to emigrate before time ¢ + h (h infinitesimally small) is h);.

In addition to emigration, the immigrant faces the “risk” of dying. Let the mortality intensity
be p¢, independent of income. Emigration and death are competing risks for an immigrant.
The two intensities add and the intensity for an immigrant to be removed from the immigrant
population is py + A¢.

The cumulative intensity of removal until time 7 is thus

/ pedt + A(rsy) = M(r) + A(r; ),

0

and the conditional probability of not having emigrated or died before a fixed time r is thus
P(r;y) = Pr(R > r[Xo = ya(0)) = e M)A oc =A0), (10)

where R is the time of residence (until emigration or death) of the immigrant and the symbol
o means proportional to. The proportionality factor exp(—M (7)) depends on the mortality,
which is assumed independent of income.

The density at income X, = x among immigrants still living in the country is proportional
to P(r;y)g(y), where g is the income density of natives and y = z/a(r) corresponding to
X, = z. Substituting for y in (10) the resulting income density for residing immigrants is

g(;r) oc g (z/a(r)) exp (=A(r; z/a(r))) .

Assume further that
A(r;y) = max {0,0(r)(1 — y)}

for given function € and constant 7. Under this condition, the intensity of back-emigration
decreases with income. This intensity (for immigrants) is then

A(r;y) = max(0'(r) (7 —y),0), & (r)>0.

Take as a numerical example the case of the income for natives being gamma distributed,
say with shape parameter a = 2 and scale parameter b = 5. The assimilation curve is the
logistic a(t) = e/ (1 + e*') starting at a(0) = 1/2 and having a = In(3)/5, corresponding to
a(5) = 3/4. The income distribution of the residing immigrants at time r after immigration
is

g(w ) o<y (w/a(r)) min {1, exp (—6(7)(r — y))} .

Here,
1

a—1_—z/b
bl (o) ¢

v (x;a,b) =

~—
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Figure 7: Income densities: after r = 5 years; solid line when (r) = /r/100, 7 = 10.86 and
dotted line without emigration; broken line for natives. Gamma model with a = 2
and b = 5. Immigrants starts at a(0) = 3 and assimilate logistically with a(5) = 3.

Mean income is 10 for both natives and residing immigrants.

is the gamma density. When 6(t) is increasing from 0 to 6(r) < 1/b, the income distribution
of the residing immigrants is piecewise gamma distributed:

v (z;a,ba(r)), x> Ta(r)

exp(—76(r)) (1 — bO(r))* v (37; a, 715?)(978"» , o <Tar).

g(w;r) o

This is found by simplifying the above.

For chosen parameter values as in Figures 7 and 8 show income densities for staying immi-
grants. With these parameter values the immigrants that stay in the country will approach a
mean income of 16.2, while the natives will have a mean of 10. Note that this applies to the
cohort of immigrants. With a steady rate of immigration, the picture is different.

6 Income distributions and election outcomes

Consider two parties C and L that are up for election to power at times t = 1,2,---. We are
interested in the series of election outcomes, and in the distribution of income. Our model
is as follows: a voter with attribute x has an economic gain in the period between elections
depending on which party is in office. The distribution of attributes over the electorate changes
from election to election, partly in response to which party is in office. We shall assume that
this response is Markovian in the sense that the distribution at next election only depends
on current regime and current distribution. The outcome of an election is determined by the
median voter with respect to its gain.

Kundu (2007) studied a related problem in a two-period model, while we consider an infinite
sequence of elections. He further assumed income and gain to have finite range, while we allow
them to be distributed over infinite ranges.

The attribute of the electorate is distributed over the real numbers with respect to economic
gain. A randomly chosen voter has attribute X such that its gain is X when C is in power and

14
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Figure 8: Same as Figure 7, now with » = 10 and mean income for residing immigrants is
12.72.

—X when L is in power. X is normally distributed with mean 6; and variance w? in period

t. The probability of the majority voting for C in election ¢ is then P (X > —X) = & (6;/w).
Thus, C will be in power when 6; > 0, L wins when 6; < 0, and the probabilities for winning
are 1/2 when 6; = 0.

Assuming now that 6; follows one random walk over the period for which L is in power, and
another random walk when C is in power. Let the state space for the combined random walk
be .-, f%, f%, fé, 0, é, %, --+. Assuming that the two separate random walks are reflections
of each other, the (central part of the) transition matrix for 6 is

p

oo R
oo Q 3
oK 3
3 O3 o
S QRO O

SRR O oo

Q" oo oo

p

where ¢ +p+7r =1.

The political economy of our model is "mean reverting" when p < r. If C is in power, there
is a shift in the gain distribution to the left, while the gain distribution shifts to the right
when L is in power. If p = r the mean gain is a symmetric random walk with probability ¢ of
staying put, except for in state 0, and the number of successive periods that one of the parties
is in office has infinite mean. If p > r the expected gain radiates out, and the system ends
up in one-party rule. In technical terms, the Markov chain {6;} is positively recurrent when
r > p and null-recurrent when r = p.

Assume positive recurrence. Let {m;} be the stationary distribution of {#;}. By direct
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reasoning
1 /p\lil-1
. = — (£ 11
i 2r (r) o (11)
r—p
TT =
0 2r+gq

Assume that the income distribution is lognormal, and is of the form exp(Y + X) = exp(Z)
depending on which party is in power. Note that Y and X might be correlated without
harming the model: Y+ X >Y — X < X > 0. Let Y ~ N(u,0?), and ¢ = cor(X,Y). The
log income has thus mean

EZ;, = EE|Z)|0)] =p+ Z —frr,—i-z —m;
A0 RO G
T

a(r—p)2r+q)

Income, conditional on party when 6 = 0 and otherwise on 0, is lognormally distributed. Its
marginal distribution is thus a mixture of lognormals. Let us study the income distribution
conditional on party C being in power. Under this condition, the equilibrium distribution of

0 is
¥ = P(Gzi)—i(r)llﬂ'o 1 >0

¥ = P(#=0)=mn.

S|

Given C and 6, the log income is normal with mean p + 6 and variance 72 = 02 + 2pow + w?.

Conditioned on C the probability density for the income In = exp(X +Y) is a mixture of
lognormal densities,

o In(in) — (M + %) 11
f@in|C) = Zﬂ' ® . e
7=0

Here, ¢ is the standard normal density. The density for income under L-rule is found the
same way, but with 7 adjusted according to the reverse correlation.

The income densities are for a given setting of the parameters given in Figure 9. For these
parameters income has clearly a more skewed distributed when C is in power than under L.
Due to the longer tail in the income distribution under C-rule, mean income greater than when
L is in power. Mean income is actually 4330 under C-rule compared to 1760 under L-rule.
Median income happens to be the same under the two regimes. From Figure 9 it is seen that
under C rule the income distribution is quite a bit more skewed under C than under L in our
numerical example. This is more dramatically born out in the PP- and the QQ plot in Figure
10. The inverted S-shaped PP plot shows that cumulative probability at income is higher
under C to the left of the median, and lower than for L to the right. Correspondingly, income
quantiles at the upper end are progressively higher under C than under L as the probability
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— C
— reference

density
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

0.0

0 2000 4000 6000 8000

income

Figure 9: Income distributions (densities) under C- and L rule. The reference distribution is
that of exp(Y’). Parameter values are (u,o,w, p,r,p,q,a) = (7,1,.5,.9,.3,.5,.2,10).

F(income|C)
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Figure 10: PP-plot (left panel) and QQ-plot (right panel) of income distributions under
C- and L rule respectively. The PP-plot is the curve (F (in|C), F (in|L)) over
the income range, while the quantile-quantile plot to the right is the curve
(F~(p|C),F~ (p|L)) over p in the unit interval. Diagonals are added, and also
dotted lines showing median or half-value.
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moves above the (common) median. Most of the action in the QQ plot takes place at high
incomes, and the effect of increased skewness under C is dramatic.
The conditional mean given state § and party C is

E[In|6,C] = exp (u + 6+ ;ﬁ) ,

while
var [In|d, C] = exp (Q,u + 260 + 7‘2) (exp (7-2) — 1)

Mean income given C, averaged over state, is thus

(o] . 1
ElIn|C] = E[E[In]6,C]|C] =3 af exp (u T 2#)
1=0

o [1 T ?i’;piiéé‘f/aﬂ P (“ * ;>

provided pexp(1l/a) < r. If pexp(1/a) > r mean income given C is infinite.
We can also calculate the conditional variance of income given C.

var [In|C] = E [var [116,C]|C] + var [E [I|0,C]|C].

The first term is simple,

E var[In]d,C]|C] = Z%C exp (2,u + 22 + 7'2> (exp (7%) — 1)
=0
_ pexp(2/a) < 2\ (exp (72) —

It is therefore necessary for var [In|C] < oo to have pexp(2/a) < r. The second term can also
be calculated

BEimp.cric] = Y afew (2t +7)
1=0
pesp(2/a)
r2 — rpexp(2/a)

= g {1—% ]exp(2u+72),

and is also finite provided pexp(2/a) < r. The remaining term to calculate is

(E[E[0,CI[CY = {EH|C)? 2
{”0 [1 T ?i’;"iiéﬁf/aﬂ o (“ * ;> } |

7 A branching point process, a possible model for market
volatility

Engle and Russel (1998) discuss autoregressive conditional duration models for irregularly
spaced transaction data in finance. We shall have a look at simple versions of their model.
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A branching point process, a possible model for market volatility

The model is usually called the Hawkes model, and was originally proposed for earth quake
data.

Consider the stock exchange. Focus on a single asset, and let Z; be its price at time ¢. The
price is constant between trading. Following TK (Example, page 75), the number of tradings
in a given period is a discrete stochastic variable. Let the period start at 0 and end at time
t, and let the number of tradings be N(¢). N is then a stochastic process. It has jumps of
unit size at random points in time, and is called a counting process. With Y(T') = Zp — Zp_
being the change in price of the asset when there is a trading at time 7, the price process can
be represented by the stochastic integral

t N(t)
26) = | Y(waN() = 3 ()
=1

where T; is the time of the i-th trading.

Assuming price changes to be independent and identically distributed, volatility in the price
process stem from clustering in the point process of trading times, {7;}, which is represented
by the counting process N. When {T;} is a Poisson process, there is no clustering. There
are many models for clustered point processes. The Neyman-Scott process have Poisson
distributed invisible mother points. Each mother point produce a cluster of a stochastic
number of visible daughter points spread around the mother, often normally. Clusters are
independent and identically distributed except for their invisible centers. We shall look at
a branching point process that is related in construction to the Neyman-Scott process, but
which is more interpretable in economic terms.

7.1 The branching point process for a market characterized by “psychology”

The idea is that each trading triggers an interest in the asset, and excites a random number
(which might be zero) of succeeding trading. This is modelled through the intensity of the point
process. Each trading is actually assumed to produce an intensity component that adds to
the intensity of previous points. Assuming this additional intensity component to be a falling
exponential, and assuming there also is a constant background intensity « (independent of
previous points), the model for the intensity is

A(t):a+§zexp <t_aT) (12)

T;<t

Note that this intensity is a stochastic process. Its interpretation is captured in the conditional
expectation E (N (t+ h) — N(t)|{T; <t}) = A(t)h + o(h), where the remainder is negligible:
o(h)/h — 0 in probability. The infinitesimal \(¢)h is thus the expected number of tradings in
a short period of length h, given the history, and A(¢) depends on the history as given in (12).

The background Poisson process with intensity « generates initial points in clusters. Each
point in a cluster generates a Poisson number of offsprings that all are members of the cluster.
The offsprings from point 7; has intensity (¢t > Ti)gexp (—t_TT"), I being the indicator
function. The integral of this intensity function is 6, which thus is the expected number of
first-generation offsprings from the point. The cluster is generated as a branching process.
Remember that a branching process dies out with probability 1, and has finite mean number,
when the expected number of offsprings from one parent is less than 1 (TK II1.9).
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A branching point process, a possible model for market volatility

Let X be the number of points in a cluster and let £ be the Poisson number of first generation

offsprings from a point,
9 t—1T;
E(f)—/ exp<— >dt—9

T O (o
. Since each point in a cluster produces stochastically the same number of points in the cluster
as the initial point, and each branch is independent, we have in obvious notation

¢
X=14+)> X
=1

Thus by conditioning, E(X) = 1+ 0E(X), and var(X) = var(X)0 + (E(X))?0, yielding
EX)=01-0"" var(X)=0(1-0)"".

The generating function for X, g(s) = F (s satisfies the equation

9(s) = sexp((g(s) — 1)) .

The clusters are therefore finite with probability 1 if 6 < 1, and they have finite mean number
it g < 1.

With 6 > 1, N will explode in finite time. We assume the reverse. The exact moments
of N(t) are difficult to compute, but the process is easy to simulate — which is done below.
We can, however, calculate approximate moments for large ¢. The number of clusters initiated
before ¢ is Poisson distributed with mean «af, and the asymptotic fraction of these that are
completed before time ¢ is 1. Thus by conditional expectation and variance, for large ¢,

E(N(t) ~ E(N(t)=at(1-6)",
var(N(t)) ~ var(N(t) =atd(1—0) 2 +at(1—0) > =at(1—6)">.

)

This variance does however not reflect the volatility, which is a local phenomenon.

7.2 Updating equations for the intensity and the cumulative intensity

The model is computationally attractive. The intensity for the next point after T}, is

0 t—T,
ANt)=a+ ()\(Tn) —a+ ) exp < =
o
Letting A\, being the intensity just after T),, the updating formula for the intensity is
Tn+1 - Tn
o

>,Tn<t§Tn+1.
0
)\n+1:a+;+()\n—a)exp — , T, < t.

The cumulative intensity for a new point is thus
t
ATy, t) = / A(t)dt
t—T,
= a(t—Tn)—i-H()\n—a)(l—exp(— >>

o

for T,, < t <T,+1. The updating equation for the cumulative intensity is

g

AT Tus1) = @ (Tops = T) + 0 (Ag — a) (1 ~exp <_Tn+1—Tn>>
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A branching point process, a possible model for market volatility

7.3 Likelihood

When estimating the parameters, the likelihood function is of great help. Consider a period
of length L. There are n observations in the period. The intensity for new points is A\g at
the start of the period. The Likelihood for the points, 17, - - , T}, is constructed by sequential
conditioning. If n = 0, the likelihood is

L =exp(—A(0,L)).

If n =1, the likelihood is
0
L=XTy)exp(—A0,T1) — A(Th,L)) = (N — ;) exp{—A(0,71) — A(T1,L)}

The general formula is

sz[(&'—i> exp{—g:la“i_“) <1_exp <—T_UT_1>>}

i=1 i=1

where Ty = 0 at the start of the period, and T,,+1 = L at the end.

In an econometric setting, there will usually be covariates to be taken into account. One
possibility is to have a log-linear regression structure in the background intensity. This is not
pursued.

7.4 Simulation and volatility

The points of trading are spread out along the line by simulating waiting distances between
them. The distance D; = T;+1 — T; is simulated by solving

where F is a standard exponential variate.

This can better be done by generating the clusters one by one. We use the fact that the
union of points generated from independent point processes has intensity the sum of intensi-
ties over the separate processes. Let us call this the additivity property of point processes.
Our first component process is the back ground Poisson process with intensity «. The points
generated by this process are called mother points. For each mother point a number, possibly
zero, of daughter points are generated. Mother plus daughters constitute clusters. The daugh-
ter process of a mother point depends only on the position of the mother, but is otherwise
independent of the mother process and other daughter processes. One might worry that the
lack of complete independence violates the additivity of component intensities. This is how-
ever not a problem since our intensity (12) is dynamically constructed and is for each ¢ based
on the history of the process. Our daughter processes will be conditioned on their mothers
and are otherwise independent on the history. It is thus a dynamic or conditional version of
the additivity property that is used here.

The mother points are generated by drawing independent exponentially distributed waiting
times between mother points. The subsequent daughter points of mother poit ¢ come at
times Tt ). The index i in (12) is replaced by the double index ¢,k and the sum in the
formula for the dynamic intensity is split according to clusters. A cluster points T¢; < ¢
has intensity A.j of a new daughter point at time ¢. These cluster-specific intensities sum to
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Figure 11: 100 simulated points. a = 0.01, § = 0.8, 0 = 20

A(t)—a. Let Ao, = Ac (Tt k+) be the cluster-specific intensity right after T, . Then A, (t) =
thc,k Tc,k#»l*Tc,k + Q

o o o’

Ak €XP — Ter <t < Tepg1, and A pp1 = Acp €Xp — The cumulated

intensity is Acr(t) = Aep(l — expf#/a, and the next daughter point is simulated by
solving A. i (t) = Ec ) where E. is a new draw from the standard exponential distribution.
There is no solution if /\f—," < E., and there are no more points in the cluster. In the opposite
case there is at least one more point, at T, jy1 =T —olnl — ﬁEck Clusters consist of a
mother point and its daughter points. some clusters overlap.

When the time points of trading {T;} have been simulated, it is no deal to simulate iid price

changes {z;}. The price process is then

Zt: Z Zi.

Z’ZT,L'St

The local volatility may be defined as the variance in price change over short periods. Condi-
tioning on the history Hy

v(h) = war Z 2

t<T;<t+h

= FEvar Z zi|Hy | + varE Z zi| Hy

t<T;<t+h t<T;<t+h
= war(2)E (N(t+h) — N()|H,) + E(2)*var (N(t + h) — N(t)|H;)
= [var(z) + E(2)*] A(t)h = E(z*)A(t)h.

The intensity is thus proportional to local volatility.

As an example, let &« = 0.01, 6 =0.8, o = 20. The simulated realization of the process
shown in Figure 11. The intensity function shown that is simulated hand-in-hand with the
point process is shown in Figure 12. The expected number of points per cluster is 5. We
should therefore see about 20 clusters in Figures 11 and 12 . Some of these clusters fall on
top of each other, and others might have very few points (one).

As another example, consider the process with parameter values = 0.01, 6=0.8, o=
50. There is now less spacing between clusters relative cluster extensions. Simulating 1000
points yields an intensity as shown in Figure 13.

8 Markov chains with continuous state space

Taylor and Karlin (1998) discuss Markov chains with discrete state space, both with discrete
and continuous time, and briefly introduces Brownian motion and related Markov processes in
continuous time and with continuous state space. Seierstad (2009) deals in more depth with
Markov processes continuous in time and with continuous state space. Here we shall look at
the fourth category, i.e Markov chains with discrete time and continuous state space.
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Figure 12: Intensity for a new observation. a = 0.01, § = 0.8, 0 = 20
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Figure 13: The intensity generated by simulating 1000 points. a = 0.01, 6 = 0.8,
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The theory is no less complex than that for Markov chains with discrete states. Concepts
as irreducibility, aperiodicity, strong and weak recurrence, transience, ergodicity, stationarity,
recurrence times etc. have the same basic meaning here as when the state space is discrete.
The main difference is that summing over states is replaced by integration.

To do integration properly, and to deal properly with the many technical aspects of the
theory, measure theory must be mastered. This is outside the scope here, and we will only
look at ordinary integration with respect to Lebesgue measure in finite dimensional Euclidean
space equipped with the Borel sigma-algebra. The reader unfamiliar with these words should
not worry. Just proceed reading, and interpret integration in the familiar way.

Robert and Casella (2004, chapter 4) give a nice introduction to Markov chain theory based
on measure theory. The essential for understanding Markov Chain Monte Carlo methods,
particularly the Metropolis algorithm, is pulled out from their exposition.

Consider a continuous state space 7. A Markov chain 17,75, - - - is a sequence of stochastic
variables with values in 7 with the property that the conditional probability of any future
event defined by variables T, 11, T 42, -+ given the history H,, up until time n (H, is spanned
by T; i < n), depends only on T,,. The Markov property is as in the discrete case: given the
present, the future is independent on the past.

The transition matrix in the discrete case has its counterpart for a continuous state chain
in the transition kernel K(u,t). Assume time homogeneity, so that for any n and any (mea-
surable) set A C T

P(Tht1 € AT, =u) = / K (u,t)dt.
A

It is logical, and indeed customary, to denote the conditional density K (u,t) rather than
K (t|u) since the condition T, = u happens before the consequence in the sequence of the
chain.

EXAMPLE 1. Let T be the real line, and consider the AR(1) process Ty,+1 = 0T,, + e,, where
the error terms e, are iid. This is a Markov chain. If the errors are N(0,1),

1 1 2
K(u,t) = ——=e 27007,
(u,?) Wor
What is the transition kernel if the errors are uniformly distributed on the unit interval? The
AR(q) process Is also a Markov chain. If X,,41 = 0+ > ¢, 0;T1+1—; + €5, the vector process
Tn = (Xn,- - Xn—q+1) is Markov on g-dimensional Euclidean space. The transition kernel will
in this case be one-dimensional in the sense that given T,, all components of T, are given
except for the first.

When the kernel is positive, K(u,t) > 0 for all ¢ and u in T the chain is irreducible, and
P (Ty41 € A|T,, = u) > 0 for all non-null sets A ([, dt > 0). The chain can also be irreducible
under other circumstances, but we shall be content with this simple sufficient condition. If the
AR(1) process has normally distributed errors, it is irreducible. Can it be irreducible when
the errors are uniform?

If the chain with positive probability can rest in a state, P(Ty,+1 = T,) > 0, the chain must
be aperiodic.

The chain is ergodic if the distribution of T}, converges to a unique distribution regardless
of the initial state. A necessary condition for ergodicity is that it is positive recurrent, i.e.
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that for every non-null A set in 7 the chain returns to A infinitively often with probability 1.
Recall that the kernel is positive.

A distribution with density m is stationary or invariant if this is the marginal distribution
of T,, when T} has this distribution Breaching conventions and denoting both probability and
density by the same symbol (7 = [ym(t)dt, K(u,A) = [, K (u,t)dt etc), the defining
property of stationarity is

/KuA u)du for all A C T.

Tat this integral is over the whole state space is suppressed in the above notation.
A Markov chain is reversible if the conditional distribution of 7;, given 7,11 = w is identical
to that of T), 11 given T}, = u.

THEOREM 8.1. A chain satisfying the detailed balance condition:
K(u,t)n(u) = K(u,t)m(t) for all t and w in T (13)
for a probability density w has w as its stationary density and is reversible.

Proof. For any A C T the detailed (because it holds everywhere) balance condition entails,
by changing the order of integration,

/K(U,A)ﬂ' //Kut u)dtdu
-

//Ktu t)dtdu

= / /Ktududt

= w(A4).

The last equation holds because K(t,u) is a probability density in u for each t. That the
chain is reversible follows from (13) since it states that the joint distribution of (T}, Tp+1)
is identical to that for the reversed pair (7),+1,7,) in equilibrium. From the identical joint
distribution follows identical conditional distributions. O

8.1 MCMC

Markov Chain Monte Carlo (MCMC, or mc?) is a simulation technique to compute the pos-
terior distribution in a Bayesian setup. Bayes’ formula for the posterior density f (0|x) from
a prior density f (6), and a conditional density for x given 6, f(z|0) is

f (l‘i9)f (9)
0)=flr) =
w(0) = O = TR
and is used extensively in economics. In some nice models for f(x|6), such as the normal
and other exponential families, there exist conjugate priors which allow the posterior to be

calculated explicitly. In more complex models the denominator [ f(z|t)f (¢)dt is difficult to
calculate when the integral is of high dimension.
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The numerator is however given, and can be used to set up a Markov chain with the posterior
distribution as its stationary distribution. The MCMC approach is then to simulate this chain
in, say, 500000 steps and after a burn-in period, say of 1000 steps to extract the values say
100 steps apart. This sample is then regarded as a sample from the stationary distribution,
i.e. the posterior, and statistics of interest are calculated.

In essence, MCMC is an ingenious method to numerically calculate integrals of high dimen-
sions approximately. With T; ¢ = 1,--- ,n being a sample from 7 obtained by an MCMC,
the integral E [k (T)] = [ h(t)w (t)dt is estimated by the mean h(T). Importance sampling
is another method to obtain a sample from 7, and as MCMC it comes in many variants. If
the integrand h(t)m (¢) is close to a Gaussian form, i.e. In (h(t)m (¢)) is close to quadratic, the
Laplace method is working well.

8.1.1 Bayesian econometrics

Bayesian statistical analysis is more widespread in the natural sciences and medicine than
in economics and the social sciences. This is surprising, since the Bayesian approach cer-
tainly make more allowance for expert opinion and judgement than the frequentist approach,
and judgement has no less place in the social sciences than in the natural sciences. But the
Bayesians are on the march also in econometrics, as is evident from the new textbooks (Lan-
caster 2004; Koop 2003) and from an increasing number of papers. Poirier (1988) provides an
opinionated discussion of Bayesianism versus frequentism in economics.

It is the availability of high speed computers and of ingenious algorithms such as importance
sampling, Gibbs sampling and the Metropolis algorithm that has made Bayesian calculations
feasible also in complex models, see Robert and Casella (2004).

8.1.2 The Metropolis algorithm

N. Metropolis worked with Ulam, Teller and other gifted scientists at the Manhattan project
and on developing the hydrogen bomb at Los Alamos. Simulation methods had been used
for years with balls in urns and other physical set-ups, but Metropolis was an early user of
computer simulation. He is on record for first using the term ‘Monte Carlo methods’. In
1953 Metropolis and others published an algorithm for discrete optimization in connection
with particle physics. The algorithm was improved by Hastings in 1970, and is in most books
referred to as the Metropolis-Hastings algorithm, but only in the 1990s did its usefulness dawn
upon the statistical community. See Robert and Casella (2004, section 7.8)

The IEEE computer society list the Metropolis algorithm as one of the 10 algorithms with
strongest influence on the practice of science and engineering over the last 100 year. The
simplex method for linear programming, the fast Fourier transform and quicksort are other
algorithms on the list, see http://www.computer.org/cise/articles/Top_Algorithms.htm.

Changing to the notation, but relying on Robert and Casella (2004, section 7.3), let the
numerator in Bayes formula be g (6) = f(x|0)f (#). We seek a Markov chain {7},} on the state
space T with 7 (6) = g (0) / [ g(t)dt as stationary distribution. One such chain is constructed
from a proposal kernel

q(u,t) >0 forall £ and win T .

as follows. This kernel is not the kernel for {7}, but is used to construct its kernel K (u,t).
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First the so-called acceptance probability

p(t, 1) = min {g(“) alu, ) 1} (14)

g(t) q(t, u)’
is constructed. Note that p indeed is a probability for all £ and u in the state space T for
{T},} . Assume ¢(t) >0 forallt € T .

The chain is started at some value t; € T . At step n, generate U, from the distribution
with density q(7,,u), which is the conditional density given 7,. Then generate

U, with probability p(T,,U,)

Thy1 = T, with probability 1 — p(Tm Un) . (15)

The proposal value U, is thus used as the next state with probability p, while the chain stays
put at its previous state with probability 1 — p.

In some cases symmetric proposal kernels are used: ¢(¢,u) = q(u,t). The acceptance prob-
ability is then min {g(u)/g(t),1}. A proposal state giving g(U,) > ¢(T},), and consequently
higher posterior density, is then accepted with probability 1. The algorithm thus tend to
move into regions of high posterior density, while occasionally visiting states with low poste-
rior density. The remarkable fact, to be demonstrated below, is that Metropolis’ acceptance
mechanism makes the chain visit sets with exactly the desired posterior probabilities in the
long run, actually regardless of the proposal kernel g as long as it is everywhere positive.

Is {T,,} a Markov chain, and does it really have a unique stationary distribution given by
w7 First, the Markov property is satisfied since U, and thus 7,41 indeed are conditionally
independent of 11,--- ,T,,_1 given T;,. Next, the chain is aperiodic except for singular cases,
see the Metropolis exercise below. Further, the chain is irreducible since g(u|t) > 0, and all
possible states can thus be reached from any state in one step.

The only remaining question, which actually is the main question, is whether 7w indeed is
the stationary distribution. We proceed to show this by showing that g satisfies the detailed
balance equation (13). Since g must have a finite integral for the posterior distribution to
exist, we will assume this to be the case. The function 7 (t) = g (¢) / [ g(u)du will thus satisfie
the detailed balance equation, and is consequently the stationary density for the chain.

The detailed balance equation to be satisfied is

g(u) K (u,t) = g(t)K(t,u) (16)
for all u and ¢. By construction,
K(ta u) = p(ta u)Q(ta u) + (1 - T(t)) 515(“)7
) = [ pltulalt
Here, d;(u) is the Dirach delta function (the limiting density with all mass at ¢) corresponding
to the event that the chain remains in its current state, and r(t) is the probability that it

moves to a different state. Since p(t,u) =1 = p(u,t) < 1 the defining relation (14) yields in
that case

9()p(t, u)q(t, u) = g(u)p(u, t)q(u, t). (17)

In the opposite case, p(t,u) < 1, (14) conversely yields p(u,t) = 1 and (17) is true. The
symmetry relation (17) is therefore true for all pairs of states u and ¢. Since furthermore
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0u(t) = 6¢(u) = 0 for all u # t, we also have everywhere

g(t) (1 = r(t)) 0¢(u) = g(u) (1 —r(u)) bu(t). (18)

Together (17,18) imply the detailed balance equation (16) for the kernel K of {T,}. 7 is
indeed the unique stationary distribution of the Metropolis Markov chain. More details on the
Metropolis algorithm and the convergence properties of its Markov chain are found in Robert
and Casella (2004).

In practice, the proposal kernel g should be chosen to balance two requirements. First,
it should be easy to draw values from its conditional distribution. That is, U, should be
computationally cheap to generate regardless of the state T;,. Secondly, ¢ should be chosen to
be as proportional to g as possible. This way, the chain will tend to move at each step and
the number of steps needed to obtain a reasonable sample will not be excessive.

9 Ornstein—Uhlenbeck processes, expected damage from
greenhouse gas emission

Linear differential equations are useful in modeling deterministic processes. The dynamic
part of the model of Weitzman (2008) discussed above for how global temperature responds
to greenhouse gas emissions is a case of linear differential equation. The evolution of global
temperature and radiation is however complex, and the deterministic model is indeed a gross
simplification. Without explicit modeling of this complexity, or say the complexity of other
processes of interest to economists that are cast in linear differential equations, a possible
extension of the model is to let the dynamics be stochastic.

Ornstein—Uhlenbeck processes, or in short OU-processes, are linear stochastic differential
equation models with fixed coefficients. The aim of this section is to develop a bit of theory for
OU-processes, first in one dimensions. Then a 2-dimensional OU-process model is established
for global temperature and radiation, where the deterministic forces of the model is as (1,
2, 3), while these are amended by a continuous stream of stochastic impulses. The question
is whether the conclusions of Weitzman (2008) hold up in this more realistic model, or per-
haps infinite expected damage is to be expected even under milder conditions. It is actually
possible that the more stochasticity there is in the process it will move faster towards higher
temperatures.

9.1 One dimension

Ornstein—Uhlenbeck processes are stochastic processes in continuous time and continuous state
space. They are Markov processes with linear Gaussian infinitesimal kernel of constant stan-
dard deviation. With X (¢) a one-dimensional OU-process pulled towards an exogenous level
m (t) with force a, the conditional distribution of X (¢ + dt) given X () is in the limit, as dt | 0,
normally distributed with mean a (m (t) — X (t)) dt and variance o?dt. The motion consists
of a drift a(m () — X (t))dt and a stochastic impulse with distribution N (0,02dt). The
stochastic impulses are independent. The standardized cumulative impulses are represented
in the so-called Brownian motion process B (t) characterized by having normally and indepen-
dently distributed differences B (t;1+1) — B (t;) ~ N (0,t;4+1 — i), tix1 —t; > 0. Infinitesimally,
the motion of X (¢) is thus X (t+dt) | X (t) ~ a(m(t) — X (t))dt + o (B(t+dt) — B(t)) =
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a(m(t) — X (t))dt + oB (dt). This is written as a stochastic differential equation
dX (t)=a(m(t) — X (t))dt + oB (dt). (19)

Seierstad (2009) discusses Brownian motions and stochastic differential equations, and the
OU-process X (t) pullet towards m (t) is a special case of the process he discuss in his (4.6) and
(4.7). Ito’s formula Seierstad (2009;(4.10)) is helpful in "solving" (19). The trick is to consider

the process Y (t) = g (¢, X (t)) = X (t) exp (at). In Seierstad’s formulation, our process has
u(t)=a(m(t) — X (t)) and v (t) = o. Since g (t,z) = zexp (—at),
2
@9 (t,z) =0,

and Ito’s lemma yields
t t
Y () = X(0) +/ {X (s)ae®® +a(m(s) — X (s))e*}ds +/ oe** B (ds)
0 0
t t
= X (0) +/ am (s) e*®ds + U/ e B (ds) .
0 0
Substituting for Y (¢) the solution is
t t
X (t) =e "X (0) +/ am (s) e®ds + a/ OB (ds) .
0

0

The effect of the initial value X (0) decays exponentially fast, and the effect of the moving
target m (s) is an exponential filter of this process. From the solution,

t
EX (t) = e “EX (0) + / am (s) e ds
0
since E [fot et (ds)} = fg *CVE B (ds)] = fg e*5=Y0ds = 0. Since further for u < ¢

t u t
/ ) B (ds) = / B (ds) + / eI B (ds)
0 0 u

where the two pieces are stochastically independent,

t u
cov [a/ eI B (ds) ,U/ et B (ds)]

0 0

= o’cov [/ e B (ds) ,/ e~ B (ds)}
0 0
= 2" ey [/ e B (ds) ,/ B (ds)}
0 0

= o2 Dyar {/ et B (ds)]
0
= 026“(“_t)/ 2051 gy [B (ds)]
0

= g2e0(u—t) ueQ‘l(s*“)ds _o <€a(u7t) _ efa(qut)) 7
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1.0

05

0.0

Figure 14: Four replicate simulations (using the method of Problem 21) of an OU-process with
X (0) ~ N(l g ),m(t)zl—e_t/g,azlandazl/ll.

’ 2a

and
52
cov[X (t), X (u)] = e *“uar [X (0)] + - <e“(“*t) - e*“(“m)
2a
2
—2a o —2a
var [X ()] = e *war [X (0)] + % (1—e2%).
It is also clear that (X (t1), X (t2), -+, X (t,)) has a multinormal distribution whenever X (0)

is normally distributed. The OU-process is thus a Gaussian process in that case.
The OU-process can only be stationary when the deterministic target is not moving, i.e.

m(s) = p. If then X (0) ~ N (u, 2a) EX (t) = p, cov[X (t),X (u)] = %ea(“*t) u <t

and var [X ()] = ‘2’ The process is then a stationary Gaussian process in the sense that
(X (t14+u),X (ta+u), -, X (tn +u)) has for all values of u the same multinormal distri-
bution as (X (t1), X (t2 ) , X (tn)) when all time points are non-negative.

9.2 Many dimensions

Let now X (t) be a vector process of p dimensions, and let B (t) be a p-dimensional Brownian
motion. The components of B are then independent one-dimensional Brownian motions. The
system of linear stochastic differential equations determining the p-dimensional OU-process
X is given by a p x p matrix of drift coefficients A, a p X p matrix ¥ representing the square
root of the infinitesimal covariance matrix Y2, and a deterministic (exogenous) p-dimensional
process b. The equation taking (19) to p dimensions is

dX (t)=(b(t)+ AX (t))dt + XB (dt). (20)
When A is invertible, the equation can be written

dX (t)=—A(-A""b(t) — X (t)) dt + £B (dt),
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and X is seen to track the p-dimensional trajectory m(t) = —A~1b(t).

Ito’s lemma is generalized to p dimensions, see Oksendal (2005; Section 4.2). It will be
applied to Y (t) = ¢ (¢, X (¢t)) where g (t,x) = C(t)z is a vector-valued function of ¢ (one
dimension) and x (p dimensions), and C'is a p X p matrix (see next Section) satisfying

d
ZC(1)=-C(t)A=-AC(1). (21)

Since %g = 0, the equation for Y is

dY (t) = C'(t) X (t)dt+C (t)dX (t)
= —AC ()X (t)dt+C (t) (b(t) + AX (t)dt + LB (dt))
= C(t)b(t)dt+ C(t)SB(dt).

Integrating this yields the representation

Xty =c@! [X(O)—i—/otC(s)b(s) ds+/0tC’(s) ¥B (ds)].

To enable calculations the matrix C' needs to be re-expressed. Diagonalization is always
possible if A is symmetric and real (Sydsaeter et al. 2005), see below. It is also possible there
is a p X p matrix V holding linearly independent row vectors that are left eigenvectors for A,
and I is the diagonal p X p matrix holding the corresponding eigenvalues. That is, VA =TV.
There could be multiple eigenvalues, and some could be zero. They appear in I' with their
respective multiplicity. Conditions for the existence of such a non-singular V' is known from
linear algebra. The drift matrix might then be written

A=v"lTY,
and V~'hold the right eigenvectors of A. The matrix

Ct)=v1te V.

is seen to be the p x p matrix solving the above differential equations. The matrix e ! is

diagonal, and when ~y; is the k-th eigenvalue of A, the k-th diagonal element of e~ is e ~*7k.
The resulting representation of our process is consequently

t t
Xt)=v" [efFVX(o)+ / eIV (5)ds + / =Ny LRB (ds)],
0 0

and

t
EX(t) = v! [etFVX(O) + / eIV h (s) ds]
0
cov(X (u),X (1)) = V! [/ e(us)FVZQV’e(tS)rds] (Vﬁl)/ u < t.
0

u
The (j, k) element of/ U 70 Yol VAP A P
0

=)k g — [VEQV/L.k (eu7j+t’Yk _ e(t—u)’m) 1

/ =i [ve2v'] .
0 J i+ Yk
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9.3 Stochastic climate dynamics, a simple OU-model

The model of Weitzman(2008) studied above is a system of two linear differential equations
for global mean temperature 7' (¢) and amount of greenhouse gas in the atmosphere F (¢).
Rephrased in parameters a = (1 — f) /c and A = Ao/ (1 — f) they are

iT (1) = 1_f<

C

Ao
1—f
dF (t) = B(F—F(t)dt.

F(t)—T (t)) dt = a (\F (t) — T (t)) dt

Climate develops according to complex laws of nature. Subsuming the complexity in addi-
tion to the linear drift of the system in independent and stochastic impulses modifying the
deterministic motion, an OU-model is worth investigating. With

T | o | o al o1 0
and B (t) = [ Bi(t) Ba(t) ], a 2-dimensional Brownian motion, the model

dT () = o (AF(t) =T (t))dt+ o1B; (dt)
dF (t) = B(F—F(t))dt+ oaBs(dt)

is a case of (20).
The question posed by Weitzman( 2008) is wether T' (t)2 increases, and how fast it will
grow. Since now temperature is stochastic, the question must be how E [T (t)Q] = (ET (t))*+

var (T (t)) develops. This is found by running the machinery developed above. And to do
that the eigenvalues and eigenvectors of A must be calculated.

Due to the triangular structure of A the model is hierarchical, with F'(t) being an au-
tonomous OU-process, and with a causality flow F' — T'. This hierarchical structure makes it
easy to calculate the eigenstructure of the process provided a # 3. It is

1 oA —a 0 1 —or
V= p-a = vl= p-a | .
FR I ) DR P ol

With the process representing values in excess of pre industrial levels, the initial value is
X (t) = 0. By some algebra

t
EX(t) = V-~ / eIV () ds
0

1
\F (1 + /3% (oze_ﬂt — ,Be_at)> ] .

When « = f the drift matrix A cannot be diagonalized. The matrix

1 —dat ] (22)

C(t) = e [ 0 1

satisfies the differential equation (21), and the solution can be computed.
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In the original parametrization this yields

ET() = A\F (1 P (aefﬁt - 5eaf>> (23)

b —«a
Ao — 1—f Py cB _1;ft> .

= 7F 1 _|_ e —
1—f ( of—(1-1) of—(1-1)
This is the same as the deterministic result (6). Is this a surprise? With a damage function

D at least as convex as the quadratic in 7" Weitzman found the expected discounted damage
to be infinite under his conditions on the uncertainties in f and r. Since

E / " D) > By, / BT = By, / T(ET©?) +varBEE)] (24)

Weitzman’s result for the deterministic dynamic model is sufficient to conclude that expected
damage is infinite in the stochastic differential equation model for global warming.

Since we were unable to see Weitzman’s result in the deterministic case, we might hope that
the variance in global increased temperature i sufficient to give infinite expected damage. The
variance does require some algebra. With g = ;‘f/\a,

2, 29 2
o] +g7oy  goj

VYV =
go3 o3

The (j, k) element of [} e®=*)TV52V7e(t=*)'ds is in the general case [VZQV’]jk (et ) — 1) %‘Jlr%'

In our case the eigenvalues are 71 = —a and v = —f. The required matrix is thus

/ e(u—s)rvz2vle(t—s)rd8

- [02;(162%) (024 g%03) =iy (1— e (o) gag]
T A (1 et o3 H1-e)oy |
From this,
var [T ()] (25)
= [Vl /0 Ty 29T g (Vl)/du]
1,1

2 2
0l owm a\ 2| L0 oany 2 e L o
= e (5 ) o g (e - 2 (1- e 4 (1- o)

and it is clear that Ey, [ Ocovar(T'(t)dt is finite.

10 Decomposition of matrices

Sydsaeter et al. (2005) present some linear algebra in the first chapter, including eigenvalues
and diagonalization. below, some supplementary stuff on singular value decomposition and
diagonalization.

The Peron-Frobenius theorem allows a rather complete understanding of the limiting be-
haviour of finite irreducible Markov chains. The theorem provides a decomposition of the
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transition matrix which has a superficial similarity with singular value decomposition. Since
singular value decomposition, SVD, is so useful in econometrics and elsewhere, and since it
perhaps is not paid sufficient attention to in economics, a brief description is included despite
SVD might not be that central to the study of Markov chains.

10.1 Singular Value Decomposition (SVD)

Any m x n real matrix A can be factored into a product A = UAV?, with U and V' real
orthogonal m x m and n X n matrices, respectively, and A a diagonal matrix with positive
numbers in the first rank(A) entries on the main diagonal and zeroes everywhere else. The
entries on the main diagonal of A are called the singular values of A. This factorization
A = UAV? is called a singular value decomposition of A. Singular value decomposition is
a direct consequence of the Spectral theorem for symmetric matrices (Sydseaeter et al. 2005,
theorem 1.7.2). This is so since AA! and A’A both are symmetric and real matrices, both
with eigenvalues in A%, and with eigenvectors in U and V respectively.

If A has rank r < m < n, say, the zero singular values can be dropped and this is also the
rank of AA" = UA?U* and A'A = VA2V where U is n x r with orthogonal columns and V
is m x r also with orthogonal columns. .Se for example Anderson, TW An Introduction to
multivariate statistical analysis (1984).

EXAMPLE 2.

5 -5 -3
-3 0 5
1 5 4
722 —191 —6657[101 0 0 —.443 618 649
= 455 593 —.664 0 461 0 —.763 —.640 .0897
522 —.782 —.341 0 0 356 || —471 456 —.755

These two outer matrices fail the orthogonality test because they are numerical approximations
only. You can check the inner products of the columns to see that they are “approximately”
orthogonal.

10.2 Diagonalization

The antilog of a square matix A is e = >22° i (—A)". For linear SDEs the matrix solving

40 (t) = —C (t) A= —AC (t) was found useful. When A = VAV ™! the matrix C' was found

by diagonalization. It is in fact

10.3 Peron-Frobenius theorem

Markov transition matrices have the special property of being non-negative, and having rows
that sum to 1. They have a decomposition which only in appearance look like an SVD. Some
eigenvalues of . P will be complex when the chain is cyclic. Let i =/ —1.
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THEOREM 10.1. Let P be the transition matrix of a finite irreducible Markov chain with
period d and all eigenvalues distinct. Then P = UAV'?, where U is the inverse of V!, VU = I
making P" = UA"V'! and where A is a diagonal matrix holding the eigenvalues of P. There
are d eigenvalues of norm 1, say A1 = 1, Ay = el - 2,-+-,d and the remaining have
norm less than 1, |\g| < 1.

Grimmet and Stritzaker (1992) discuss the Peron-Frobenius theorem, also for the case of
multiple eigenvalues.

0 1 0 O
S 0 50 o .
EXAMPLE 3. Let P = 0 5 0 5 The period is 2 and the first two eigenvalues are
0 0 1 0
+1 and -1. The other two are :l:%. Actually,
r_1 1 2 _2 -1 _1 2 ~2 1
IS R T 1 TR S
P =12, % 1 .° 5 i021 2 d
1?2 0F 9% 3 S B A
L 2 2 3 3 2 2 2 2
[ 1 -1
_ 1 1 1 1 1 1 11 1 1
= | {lls 3 5 s]-| 4|5 3 3 5]
1 1
_1 1
_i 1 il
+- | 0| [ -1 -1 1 1]—5 ST -1 -1 1]
§ 10
3 3
Making
_ 9 K
PQn_ 1 1 0 2 0 1 0 3 0 3
=1 |ls 5 0]+ 2 -+ 0 % 0
2 2
[ 1] 0 -3 0 3
and - ) )
1 0 2 0 —3
_— 1 ) X N2 |1 8 1 03
+1 _
L [0303“(2) 0 -1 o 1
2 2
[ 1] -3 0 3 0

There is one limit for P?" and another for P?"*1 for n running over the integers.

11 Some problems

PROBLEM 1 (Mean and variance). Show by partial integration in the continuous case, and
partial summation in the discrete case, that EX = [7° (1 — F(z))da when F is the cdf for
X and F(0) = 0. Why is thus EX = — [[* F(x)dz + [;° (1 — F(z)) dz when the expectation
exists? Show also that E [X?] = oo is equivalent to var(X) = co and E [(X - k)Q] = oo for
all finite k.
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PROBLEM 2 (Infinite damage from global warming?). Assume the feed-back from tempera-
ture to radiation, equation (2), to be non-linear, say with f being an increasing function of T
making f(T)T convex and with f(oo) being Weitzman’s f. Under Weitzman’s distributional
assumptions, will then expected discounted damage due to global warming be infinite?

PROBLEM 3. Prove that when X has a gamma distribution with shape parameter o and

scale parameter 3, the moment £ X¢ exists and FX¢ = F(FC(’;:)C) B¢ whenever ¢ > —a. Use (8) to

show that EX = af, var(X) = a? and that the third central moment, reflecting skewness,
is B(X — EX)3 = 2a/3.

PROBLEM 4. Show that X = Z?2 has the density
r

—x
V2T

when Z has the standard normal distribution with density ¢ (2) = exp (—2?/2) /v2m. Thus,
the distribution of Z2 is indeed the chi-square distribution with 1 degree of freedom, which is
the gamma distribution with o = % and $ = 2. Comparing with (7), you find T'(0.5) = /7,
which is correct.

e

Wl
(S

PROBLEM 5. Use the convolution formula to prove that the sum of two independent gamma
variables with identical scale parameters is gamma distributed.

PROBLEM 6. Show that the gamma distributed is conjugated to the Poisson distribution
in the following sense. If the prior distribution for the Poisson parameter p is gamma with
shape parameter a and scale parameter 5, and if the result of the Poisson experiment is the
number x, the posterior distribution for y is gamma, actually with shape parameter x + « and
scale parameter 1+ 1/f.

PRrROBLEM 7 (Criminal carriers). Are there distinct groups in the population with respect
to criminal carriers (number of criminal charges per year from age 15 to age 24, say)? Moffit
(1993) hypothesize two types, the adolescence limited, and the life course persistent criminals
— in addition to the non-criminals. Torbjorn Skardhamar at SSB is interested in whether
models with latent grouping (distinct groups, but with unobserved group membership) as
suggested by Moffit, or latent models with continuously distributed heterogeneity is the more
appropriate. Skardhamar (2010), and in a forthcoming paper is looking at the following model.
Let a person be faced with Y, criminal charges from age a to a + 1. Let it be characterized by
observable attributes . Assume one-dimensional continuous random heterogeneity, and let A
be a stochastic variable representing this latent variation. Given x and A {Y,} are independent
and Poisson distributed, E [Y,|z, A] = p (a,z) A. Let A be gamma distributed with shape- and
scale parameter (o, ). Find the joint distribution of {Y,}. The covariate vector x might be
history-dependent in the sense that x, is the covariate vector for Y, E [Y,|zq, A] = p (a, z4) A,
and z, might depend on history of criminal charges up to age a—1. What would then the joint
distribution be? Consider now the discrete latent model. What would the joint distribution
be if A\ instead has a three-point discrete distribution as suggested by Moffit? Software for
fitting latent group models have been developed by Nagin, see Nagin (2005).

PROBLEM 8 (Borel’s Paradox). You shall see that the conditional density of a stochastic
variable X given an event B of probability zero is ill-defined. The conditional density is in this
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case really f(z|B) = %, which certainly can be everything. The “paradox” is that we define

the conditional density of X given Z = z to be

XIZ (2] 5) = fX%(z,2)
PP = 57

The denominator represents the event P(Z = z) = 0, and the conditional density is thus ill-
defined for a given point z. The conventional conditional density is only one of an infinity of
possible conditional densities at z. However, regarded also as a function of z, the conventional
conditional density has some nice properties. The most important is that it ensures the rule
of conditional expectation, EE(X|Z) = E(X).

As an example, let X and Y be iid uniform (0,1). What is the conditional distribution of
X given the event B = {X =Y}7 This event, which has probability zero, can be expressed
in many ways. Let first Z; = X — Y. Compute the joint distribution of (X, Z), and use
the conventional definition of conditional density fX41(z|0) that we seek. Then let Zy =
% — 1, and calculate fX1%2(z|0) in the same way. To understand what is going on, sketch
the two events By = {|X — Y| < e} and By = {|%5X| < ¢} in the unit square. What are
then, approximately, the two proper conditional probabilities P(X < z| |X —Y]| < ¢) and
P(X < z| ‘%‘ < €)? Do these conditional probabilities agree with the two conditional
densities you calculated above? You can define an infinity of different neighborhood system
that converge to the null event B. Each of these neighborhood systems produce a conditional
density through a limiting process, and an infinity of different conditional densities emerge.
The Borel’s Paradox played a huge role in the Scientific Committee of the IWC in 1995 when
the Bayesian Synthesis method used to assess the Alaskan stock of bowhead whales fell prey to
the Borel Paradox (Schweder and Hjort 1996). The problem was that in the Bayesian analysis
there were more prior distributions than there were free parameters. With only one parameter
« in the unit interval, say, X and Y could carry the two independent prior distributions for
«, and the conditional distribution for X given the event X = Y is undetermined — so the
Bayesian has a problem in melding his surplus of prior distributions!

PROBLEM 9 (Incomes and elections). Verify the stationary distribution (11). Let the success
run 7" be the number of successive periods that C is in office. You shall determine E (T'). Let
V,, be the n-th return time to the state & = 0 for a chain that starts in this state. Why
isT = Zgzl V., where N has a geometric distribution with success probability %, making
E (T) = 2EV? Use the Basic limit theorem for Markov chains (TK Theorem 4.1) to determine
EV from the stationary distribution for #. What is the expected success run for the party
L? Returning to the income distribution, under what conditions is expected income higher
when C is in power than under L, and when is the income distribution more dispersed? In
the numerical example, median income turned out the same. Is this a coincidence, or will this
generally be the case?

PROBLEM 10 (Roots of Markov chains). In his paper "Does permanent income determine
the vote?" Jo Thori Lind has the following problem. He has estimated the transition ma-
trix P of a Markov chain with three states. The time step is one year. He would how-
ever like to find the quarterly transition matrix, or more generally P* for h > 0. For
given h Lind fears that there there might be several solutions. Is the solution unique if
it is required to be continuous in h and to tend to the identity matrix when A tends to
zero? Or is this restriction unnecessary? Lind’s solution is to consider a continuous time
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Markov chain with infinitesimal generator A such that P* = exp(Ah). See Taylor and Karlin

page 394. Find A for the P given below The Peron-Frobenius theorem is useful here. Ex-
0.33273 0.48364 0.18364
plain. Lind’s estimate is P = | 0.16167 0.64607 0.19226 | and his quaerterly solution is
0.11750 0.44125 0.44125
0.71650  0.21457 0.068938
P/4=| 0.074017 0.85003 0.075954 |. Is he right? Do the numerical calculation!
0.038078 0.18008 0.78184

PROBLEM 11 (Regression paradox). Stigler (1986) tells the story of Francis Galton and
his difficulty with the so-called regression paradox: why does not the distribution of heights
of males in a population regress towards a distribution concentrated at the mean? Galton
was puzzled that we do not see such a regression towards the mean, since tall fathers tend
to get shorter sons and short fathers get taller sons. Construct a Markov chain for this
process assuming a normal transition kernel making fathers and sons have the same marginal
distribution. Show that this marginal distribution indeed is the stationary distribution for the
chain.

PROBLEM 12 (The epidemics of rumors). Consider a rumor that is spread by direct contact
among /N individuals in a population. The process is continuous in time, and time is measured
in hours, say. Each individual has a constant intensity A of making contact with any other
individual, i.e. the waiting time until the individual a makes contact with a particular other
individual, say b, is exponentially distributed with mean 1/\. If an individual that has heard
the rumor makes a contact with an individual that has not heard the rumor, it is spread on.
If however the contacted has already heard the rumor nothing happens. Let X (t) be the
number of individuals that has heard the rumor after ¢ units of time. Why is X (¢) a Markov
process? Is it natural to call it a finite birth process? What is the infinitesimal generator for
the process? Why is N an absorbing state? Let X (0) = 1. Let T be the time until absorbtion
(when everybody has heard the rumor). Show that the expected time until absorbtion is

N-1 1
E(T)= .
(T) — An (N —n)
Note that m = % (% + ﬁ) and that ZnN:_f% = In(N — 1) + v + O(N~') where

v = 0.5772156649015328606065120900. is Euler’s constant and O(N~!)N converge to some
constant as N — oo. Use this to argue that

2(In(N —=1)+7v)  O(N7YH
AN TN

Is it surprising that a rumor spreads faster to the whole population the more individuals there
are?

E(T) =

PROBLEM 13. A random walk with continuously distributed steps is a Markov chain. Show
that for no function with finite integral can the detailed balance equation hold for such a
chain.

PROBLEM 14 (Metropolis). Show that in the Metropolis Markov chain the event T),41 = T,
has positive probability provided g(u)q(u,t) # g(t)q(t,u) for u and ¢ in a set A of positive
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probability. Show further that the Markov chain {U,} generated by the kernel ¢ is identical
to {T),} if g(u)q(u,t) = g(t)q(t,u) everywhere, and thus has the same stationary distribution.
The chain might then be periodic.

PrOBLEM 15 (MCMC). The yearly number of bankruptcies X in a certain industry is
assumed Poisson distributed with rate A\. A Bayesian posterior distribution is sought for A
based on the prior belief that A\ is gamma distributed with shape parameter « and scale
parameter 8. Since the Poisson and the gamma are conjugate distributions, there is really
no problem. Do however construct an MCMC to recover the posterior distribution. Use the
normal proposal distribution. Make a program and run it to confer that the posterior indeed is
a gamma with shape parameter 6 and scale parameter 1/3 when X =4, o« =2 and g = 1/2.

PROBLEM 16. Consider the model for income assimilation of immigrants presented in Section
5. Without back-emigration, immigrants having resided r units of time would have an income
distribution with density proportional to g(x/a(r)) under the model. Express the mean and
variance of X, for these immigrants in terms of EY and var(Y) in that case? Explain why
the income density for immigrants still residing after r units of time is proportional to

g (x/a(r)) exp (=A(r; z/a(r)))

when back-emigration follows the proposed model. In Section 5, the intensity of back-
emigration was assumed to fall with income. That need not be the case. Assume now the
model A(r) = ¢'(r)In(y) where 6 is positive, increasing and concave. Show that the income
for immigrants still residing after r units of time is gamma distributed provided incomes are
gamma distributed for natives. It is conceivable that a(oco) > 1. Why is this a necessary
condition for immigrants to be fully assimilated with respect to income when back-emigration
intensity is increasing in income?

PrROBLEM 17 (Random walk?). Campbell et al. (1997) discuss various methods for testing
the hypothesis of the return on an asset being a random walk. Consider the following exten-
sion of their simple two-state Markov chain model on page 38, let the chain Y; have states
-1, 0, 1, where 0 denotes no change in price, usually because of no trade that day, and the
other two states reflect a drop or an increase in price. Let the transition probability matrix

v u l—u—w
l—u—w u w
What is the range for (u,v,w)? The so-called CJ-statistic is Ng(n)/N,(n) where Ng(n) is
the number of sequences of length 2 in the chain {Y;} over t = 1,--- ,n of either consistently

non-negative or non-positive returns, while N, (n) is the number of reversals from non-positive
to positive or from non-negative to negative. If, for example n = 10 and the ten first states
happen to be 0,1,1,1,0,1,-1,-1,0,1 making Ns(10) = 7 (there are actually 5 non-negative se-
quences in the first 6 values) and N,(10) = 2. By an alternative definition Ng(n) is the
number of sequences in the chain {Y;} over t = 1,--- ,n of either consistently non-negative
or non-positive returns. Then N(10) = 3. Work out the stationary distribution of the chain
Calculate ps = ENg(n)/n under both definitions. What is u, = EN,(n)/n? Are these num-
bers independent of n? What is the “theoretical” value of the CJ-statistic, pus/u, under the
two definitions? The value of the asset has steps X;. The value process is a random walk
for some values of (u,v,w). What are these values? What is ps/u, under the random walk
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hypothesis in the two cases? Can the same values be obtained when there are dependencies
between consecutive steps? Which version of the CJ-method is useful for testing the random
walk hypothesis?

PrOBLEM 18 (Random walk?, continued.). In the context of the previous problem, consider
the branching point process model for time points of tradings in a specific asset. The branching
point process model is discussed in Section 7. There, the value of the asset, Z is thought of
as a random walk over time points of trading. Extend this model to the case of the returns
(the change in value, possibly on the logarithmic scale) follows the Markov chain {Y;} of the
previous problem. A reasonable hypothesis is that the returns are positively related. Why is
it reasonable to take that to mean 2v+wu > 1, 2w+wu > 17 There is a trend in the value of the
asset for most values of the parameters u, v, w. Under what condition will there not be a trend
in the asset value? Argue that the long-term value in fact is EZ(t) ~ t% for ¢
large. The parameters « and 6 are defined in (12). A more appropriate model is to have the
return (on the logarithmic scale) normally distributed with mean dependent on the previous
return, and perhaps also on the time since the previous trading. Develop a parametric model
for such a process. What values of your parameters would yield high volatility in the value
process, without inducing a trend? Discuss this intuitively, and simulate the process if you
have time.

PrROBLEM 19. Originally, ‘martingale’ denoted the boisterous strategy of doubling the bet
if you lose in a coin-tossing game, and to quit at time 7" when the first gain is made. Let Y,,
be the wealth of the player using the martingale strategy. Assume the coin to be fair. Why
is P(Yp =Yy + 1) = 1 if the first bet is 1, then 2 if loss, then 4 if loss again, etc? The player
will thus have a net gain with certainty — even though the game is fair: Y is a martingale!
Why is this paradoxical — and what is the root of the problem? Let now X,, be the step in the
random walk S,, = S,,—1 + X,, where P(X,, =1)=p >0, P(X,,=—-1)=¢g=1—p > 0. Show
that Y, = (¢/ p)sn is a martingale. Show that Y,, also is a martingale when the random walk
only lives on 1, 2, ..., N-1, and is absorbed in the boundary states 0 and N. The probability
of being absorbed in 0 from an initial state i is found in Taylor and Karlin (1998 page 154)
and denoted by wu;. Use the martingale property and the fact that the process will eventually
be absorbed with certainty in either 0 or N.

PrROBLEM 20. Consider the optimal replacement problem discussed in Karlin and Taylor
(1998, page 223-228). To simplify matter, assume that without replacement, the system
deteriorates monotonically, and that from state i it either stays, moves to state i+1, or moves
to the worst state L, with properties p;, ¢; and r; respectively, 0 = 1,--- L — 2, po = 0.
From state L-1, the system can stay or move to L, and L is an absorbing state — still when no
replacements are done. Write up the transition probability matrix under the no replacement
strategy. What are the conditions on p;, ¢; and r; to secure the stochastic ordering (2)
P(Xpy1 > k| Xy, =1) < P(Xuy1 > k| X, =7) for all k, i < j on page 2257 Assume this
stochastic ordering, and also monotonicity in the maintenance cost, ag < a; < --- < ag.
Show that the optimal strategy must have the structure: replace when X,, > k. Can you
characterize the optimal replacement strategy further?

PROBLEM 21 (Simulating an OU-process). Let the 1-dimensional process be given by (19)
for given parameters a and o, and for given moving target m(t). The goal is to simulate the
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process at discrete points in time 0 < t; < tg < - -+ < t,. Denote X (¢;) by X; and show that
the conditional distribution of X;;; given X; is normal with mean and variance

tit1
EXin|Xi] = e“(titiﬂ)XiJr/ m (s) aes~ti+1)
ti
o2
var [X;11|Xi] = 7(1_ea(ti_ti+1)>_
2a

With Z;11 ~ N (E [Xi41]Xi],var [X;41|X5]) i =0, -, Zy ~ X and independent,

)

Xi=> 7,
=0

J
and the task is accomplished.

PROBLEM 22. Consider the matrix (22). Show that C(t) = e~4* where A is the drift
matrix in the stochastic differential equation model for global warming. Check the differential
equation for C.

References

[1] Aiyagari, S. R.1994. Uninsured idiosyncratic risk and aggregate savings. Quarterly Journal
of Economics. pp 659-684.

[2] Bewley, T. F. 1986. Stationary Monetary Equilibrium with a Continuum of Independently
Fluctuating Consudmers. In Hildenbrand, W. and Mas-Colell, A. (eds) Contributions to
Mathematical Economics in Honor of Gerard Debreu. North Holland.

[3] Borjas, George J., and Bernt Bratsberg, 1996: Who Leaves? The Outmigration of the
Foreign-Born. The Review of Economics and Statistics , 87(1): 165-176.

[4] Campbell, J.Y., Lo, A.W. and MacKinlay, A.C. 1997. The econometrics of frinancial
markets. Princeton University Press

[5] Engle, R.F. and Russel, J.R. 1998. Autoregressive conditional duration: A new model for
irregularly spaced transaction data. Econometrica, 66: 1127-1162.

[6] Grimmet, G.R. and Stirzaker, D.R. 1992. Probability and random processes. Claredon
Press, Oxford.

[7] Koop, G. 2003. Bayesian Econometrics. Wiley.

[8] Krusell, P. and Smith, T. 1998. Income and Wealth Heterogeneity in the Macroeconomy.
Journal of Political Economy 106: 867—-896.

[9] Kundu, T. 2007. Can democracy always lead to efficient economic transitions? Seminar
at QI 01.02.07, http://www.oekonomi.uio.no/seminar/torsdag-v07/kundu.pdf

[10] Lancaster, T. An introduction to modern Bayesian econometrics. Blackwell.

41


http://www.oekonomi.uio.no/seminar/torsdag-v07/kundu.pdf

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

References

Moffitt, Terrie E. 1993. Adolescence-limited and life-course persistent antisocial be-
haviour: A developmental taxonomy. Psychological review 100: 674-701.

Nagin, D.S. 2005. Developmental trajectory groups: Fact or a useful statistical fiction?
Criminology 43: 873-904.

Poirier. D.J. 1988. Frequentist and subjectivist perspectives on the problem of model
building in economics. Journal of Economic Perspectives, 2: 121-144.

Robert, C.P and Casella, G. 2004. Monte Carlo statistical methods. Second Edition.
Springer.

Schweder, T. and Hjort, N.L. 1996. Bayesian synthesis or likelihood synthesis — what does
the Borel paradox say? Rep.int.Whal.Commn, 46: 475-479.

Seierstad, A. 2009. Stochastic Control in Discrete and Continuous Time. 48: 295-320

Skardhamar, T. 2010. Distinguishing facts and artifacts in group-based modeling. Crim-
inology. Springer.

Stigler, S.M. 1986. The history of statistics; the measurement of uncertainty before 1900.
The Belknap Press of Harvard University Press.

Stokey, N.LL and Lucas Jr, R.E. 1989. Recursive methods in economic dynamics. Harvard
University Press

Storesletten, K., Telmer, C. and Yaron, A. 2004. Consumption and Risk Sharing over the
Life Cycle. Journal of Monetary Economics 51: 609-633.

Sydseeter, K. Hammond, P., Seierstad, A and Strgm, A. 2005. Further Mathematics for
Economic Analysis. Prentice Hall.

Taylor, H.M. and Karlin, S. 1998. An introduction to stochastic modeling. Third edition.
Academic Press.

Tinbergen, J. 1956. On the theory of income distribution. Weltwirtschafliches Archiv.
77: 155-1175 (Reprinted and corrected in Jan Tinbergen; Selected Papers, (eds. Klassen,
L.H., L.M. Koyck and H.J. Witteveen) North-Holland 1959: 241-263.)

Weitzman, M. (2008) On Fat-Tailed Climate Change, Uncertain Discounting, and the
Backstop Role of Fast Geoengineering (Note, Dept. of Economics, Harvard)

Weitzman, M. (2009) On modeling and interpreting the economics of catastophic climate
change The Review of Economics and Statistics; Vol XCI, pp 1-19. XCI, pp 1-19.

Oksendal, B. (2005). Stochastic Differential Equations; An Introduction with Applica-
tions. Sixth Edition. Springer.

42



	Introduction
	Is expected damage due to global temperature rise infinite?
	Some continuous distributions
	Tinbergen's model for the formation of income distributions
	Transition intensity and competing risk, income assimilation of immigrants
	Income distributions and election outcomes
	A branching point process, a possible model for market volatility
	The branching point process for a market characterized by ``psychology”
	Updating equations for the intensity and the cumulative intensity
	Likelihood
	Simulation and volatility

	Markov chains with continuous state space
	MCMC

	Ornstein–Uhlenbeck processes, expected damage from greenhouse gas emission
	One dimension
	Many dimensions
	Stochastic climate dynamics, a simple OU-model

	Decomposition of matrices
	Singular Value Decomposition (SVD)
	Diagonalization
	Peron-Frobenius theorem

	Some problems

