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Chapter 1

Adverse Selection

1.1 Introduction

As an illustration of adverse selection, consider the regulation of a public
utility. The players are:

• a regulator, who is interested in the provision of a service, q, generating
a gross utility U(q), where U 0 > 0 > U 00, and

• a firm, which faces a cost given by q, where  is a cost parameter
ranging from  to ̄.

The firm is paid by the regulator, who makes a transfer t to the firm; this
transfer costs the regulator (1+)t, where  > 0 is the shadow cost of public
funds (i.e. the cost of making one unit of transfer).
Under complete information, the regulator’s problem can be written as

max
q,t

U(q) (1 + )t

s.t. t  q.

where the constraint arises from the fact that the regulator must allow the
firm to cover its cost of production. Since transfers are socially costly ( > 0),
they should be kept as low as possible: t = q; plugging this into the objective
function, the regulator’s problem becomes

max
q

U(q) (1 + )q.

The first-best solution, qFB (), solves the first-order condition

U 0(q) = (1 + ).

1
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The corresponding level of transfer required is given by tFB() = qFB().
However, there is an issue: in most real-world settings, it is the firm, not

the regulator, that has the best idea of the true cost. That is, the regulator
does not know the true value of . If the regulator simply asks the firm to
report  and then enacts the outcome (qFB(̃), tFB(̃)) based on the firm’s
reported cost ̃, the firm would have an incentive to over-report, i.e. to report
a cost ̃ > .
What can the regulator do? If the regulator were to o§er a unique package

(q, t), then to ensure that the contract is accepted by the firm, whatever
its cost, the package should satisfy t = ̄q (so that even the highest-cost
firm agrees to the package). The best such contract, i.e. the contract that
maximizes U(q) (1 + )t = U(q) (1 + )̄q, is then qFB(̄).
However, the regulator can also try to adapt the package to the cost of

the firm. Indeed, using the revelation principle, the best the regulator can
do is to o§er a menu of options (q(), t())2[,̄], satisfying the incentive-
compatibility constraint:

 = argmax
̃

t(̃) q(̃).

This type of agency problem arises in many settings:

• interaction between the shareholders of a firm and its managers, or the
firm and its workers: private information about the productivity of the
managers or the workers;

• interaction between an investor and a firm, or a bank and its managers:
private information about the projects undertaken;

• relationship between an insurance company and its customers: private
information about the risks that the customer is facing;

• price discrimination: private information about the customers’ willing-
ness to pay.

The term “adverse selection” comes from the insurance market: when
insurance companies raise their premiums, the first customers to drop out
are those with the lowest risk; insurance companies are thus left with the
highest-risk policyholders.1

1Interestingly, thanks to extensive databases, insurance companies now often have bet-
ter information than their customers about the risks that they are facing — but this just
turns the adverse-selection problem around.
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1.2 A Simple Example

1.2.1 Price Discrimination

There are two parties:

• the principal is a firm (seller), which can produce a quantity q of a good
at cost C (q), such that C 0, C 00 > 0;

• the agent is a customer (buyer), who obtains a utility q from the good,
where  can take one of two values,  (with probability µ) or ̄ > 
(with probability µ̄ = 1 µ).

Remark 1 1. The variable q can also be interpreted as the "quality" of the
good in question; the parameter  can thus reflect the customer’s size, or the
taste for quality.
2. The framework applies equally well to the case of a single customer (the

probabilities µ and µ̄ then reflecting the seller’s prior beliefs about ) and to
the case of a large population of infinitesimal customers (in which case µ and
µ̄ can be interpreted as the proportion of customers with low and high values
of ).

1.2.2 Complete Information

Consider first a complete-information setting in which the seller knows the
buyer’s type. Denoting by t the total price paid by the buyer, the seller’s
profit-maximization problem can be written as:

max
t,q

t C(q)

s.t. q  t  0.

The constraint in this problem simply requires that the buyer should have
a non-negative utility (since the buyer can always choose to buy nothing at
all).
The seller maximizes her profit by setting t as high as possible. Thus the

constraint is binding, t = q, and we can rewrite the seller’s problem as

max
q

q  C(q).

This leads to (where the superscript FB stands for "First-Best"):

• the optimal quantity, qFB (), solves the first-order condition C 0(q) = .

• the optimal transfer is then tFB() = qFB().
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1.2.3 Incomplete Information

Let us now turn to a more realistic incomplete-information setting, where
the seller no longer knows the buyer’s true type, but only the relative prob-
abilities µ and µ̄. The seller will thus seek to maximize her expected profit,
taking into account the participation or “Individual Rationality” constraint
(“IR” hereafter) as well as the “Incentive Compatibility” constraints (“IC”
hereafter); that is, the seller’s profit-maximization problem becomes (where
the overline and underline respectively refer to "high-type" and "low-type"):

max
(q,t),(q̄,t̄)

µ(t c(q)) + µ̄(t̄ c(q̄))

s.t. ̄q̄  t̄  0 (IR)

q  t  0 (IR)

̄q̄  t̄  ̄q  t (IC)

q  t  q̄  t̄. (IC)

Denoting the buyer’s rents (i.e., net utility) as r̄ = ̄q̄  t̄ and r = q  t, we
can rewrite this problem as:

max
(q,r),(q̄,r̄)

µ(q  c(q) r) + µ̄(̄q̄  c(q̄) r̄)

s.t. r̄  0 (IR)

r  0 (IR)

r̄  r + (̄  )q (IC)

r  r̄  (̄  )q̄. (IC)

Combining the two IC constraints yields:

(̄  )q̄  r̄  r  (̄  )q,

which in turn implies
q̄  q. (1.1)

That is, incentive compatibility implies that a customer with a higher type
 must obtain a higher q.
This maximization problem has four choice variables and four constraints.

How do we solve this? Take the economist’s approach: guess which con-
straints are binding, turn them into equalities, and omit the non-binding
ones:
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• Together, the IR for a low-type (IR) and the IC for a high-type (IC)
imply the IR for high-type


IR

; indeed, adding


IR

and (IC) yields

r̄  (̄  )q  0,

so we can ignore

IR

; intuitively, since a high-type who mimics a low-

type obtains in this way more utility than a low-type, a high-type is
always willing to participate if a low-type is.

• Ignoring

IR

implies in turn that:

—

IC

must be binding: otherwise, the seller could increase her

profit by slightly reducing r̄ without violating any constraint;

— using (1.1), this in turn implies that (IC) can be ignored, since
then r̄  r = (̄  )q  (̄  )q̄:

— (IR) must also be binding: otherwise, the seller could increase
her profit by slightly reducing the rents of both types by the same
amount, as this does not a§ect the IC constraints (since we are
subtracting the same amount from both sides of the inequalities);

Thus, at the optimum, we can ignore

IR

, replace both


IC

and (IR)

with equality constraints, and replace (IC) with (1.1):

max
q,q̄

µ(q  C(q) r) + µ̄(̄q̄  C(q̄) r̄)

s.t. r = 0, (IR)

r̄ = (̄  )q, (IC)

q̄  q.

The two binding constraints determine the buyer’s rents, as a function of the
quantity assigned to a low type: r = 0 and r̄ = (̄  )q; plugging these into
the objective function leads to:

max
q,q̄

µ

q  C(q)


+ µ̄


̄q̄  C(q̄) (̄  )q



s.t. q̄  q.

If we ignore for the moment the monotonicity constraint, the first-order con-
ditions yield:

w.r.t. q̄ : C 0(q) = ̄

w.r.t. q : C 0(q) =  
µ̄

µ
(̄  ). (1.2)
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The first-order condition with respect to q̄ is the same as for the first-best
(with full information); hence the solution is q̄SB = qFB(̄). By contrast,
the first-order condition with respect to q implies that qSB < qFB(). Since
the quantity assigned to a low-type customer, q, determines the rent r̄ that
needs to be left to a high-type agent, it is optimal for the seller to lower
this quantity below the e¢cient level, so as to extract more surplus from a
high-type.
Since qFB() < qFB(̄), it follows that the candidate solutions character-

ized by the above first-order conditions satisfy q̄SB > qSB. These candidate
solutions thus indeed constitute the second-best optimum. Computing the
optimal rents in this second-best setting, we find

rSB = rFB = 0,

r̄SB = (̄  )qSB > 0.

Using t () = q () r (), the transfers are then:

tSB = qSB,

r̄SB = ̄q̄FB  (̄  )qSB = qSB + ̄

q̄FB  qSB


.

Remark: corner solution. We implicitly assumed that the seller finds it
optimal to sell to both types of buyers. However, if the quantity C 0 (0) <
 µ̄

µ
(̄ ) (e.g., if  µ̄

µ
(̄ ) is negative), then it is optimal for the seller

to ignore low-type buyers; in that case, the seller can extract all the surplus
from high-type buyers (since q = 0 leads to r̄ = 0), and thus will maintain
the e¢cient level of trade (q̄SB = q̄FB).
Remark: rent vs. e¢ciency trade-o§. It is possible for the seller to

implement the first-best, since it satisfies the monotonicity requirement:
qFB(̄)  qFB(). However, it is not optimal for the seller to do so, be-
cause of the expected rent she would have to pay is greater: while the rent to
a low-type buyer is zero (r = 0), the rent to a high-type buyer is determined
by the quantity assigned to a low type, and increases with that quantity;
thus, implementing the first-best would require giving a high-type buyer a
rent equal to:

r̄FB = (̄  )qFB() > (̄  )qSB = r̄SB.

Furthermore, keeping in mind that the seller’s objective can be expressed as
total expected surplus minus expected rent, consider the impact of a small
reduction of the quantity assigned to a low-type, just below the first-best level
qFB(): this generates only a second-order loss of the surplus associated with
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a low type, but triggers a first-order reduction of the rent that must be left
to a high type; it follows that, while the first-best is implementable, it is
optimal for the seller to depart from it and reduce the quantity assigned to
a low-type buyer below qFB(), so as to save on the rent left to a high-type
buyer.
Remark: implementation. The above optimal mechanism can be imple-

mented as a non-linear tari§, with a marginal price equal to  up to qSB, and
jumping to ̄ >  afterwards (see Figure 13.1); indeed, when confronted with
this non-linear tari§:

• a low-type customer is willing to choose qSB (he is actually indi§erent
between all levels q  qSB — a slight reduction in the marginal price
would su¢ce to break this indi§erence and induce qSB for sure);

• a high-type customer is willing to buy q̄SB (he is indi§erent between
all levels q > qSB; to break this indi§erence, the marginal price should
be slightly reduced for q  q̄FB and slightly increased afterwards).

Note that this tari§ is convex; thus, it cannot be implemented by a fam-
ily of two-part tari§s (as the lower envelope of a family of two-part tari§s
is necessarily concave). It could however be implemented using three-part
tari§s.2 See Figure 13.3.
Remark: commitment. The above analysis relies on the seller’s ability to

commit to a given mechanism. It may no longer be credible if the seller can
"renegotiate", unilaterally or bilaterally, the contracting terms.
. Unilateral renegotiation. The above mechanism commits the seller to

leave an informational rent to a high-type buyer. Ex ante, this rent is needed
to induce the buyer to reveal his type. But once the type has been revealed,
the seller has an incentive to renege on her promise and charge the "full"
price to the buyer; that is, if the buyer chooses the option (q̄, t̄), then the
seller knows that the buyer has a high type ̄, and she can charge him t̃ = ̄q̄.
Of course, if such opportunistic behaviour is anticipated, then a high-type
buyer will not reveal his type and will instead pretend having a low type;
in other words, if the seller cannot credibly commit herself to "pay" for the
information provided by the buyer, then the buyer will not communicate this
information.

2Cell phone plans are common examples of three-part tari§s, as they often (1) require
the subscriber to pay a fixed monthly fee, (2) provide a certain amount of minutes at no
additional expense, and (3) charge some linear price for minutes beyond this amount. See
Figure 13.2.
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. Bilateral renegotiation. Another problem appears if the two parties can-
not commit not to renegotiate (bilaterally and voluntarily) the terms of the
mechanism. From an ex ante perspective, it is optimal to commit to an in-
e¢ciently low level of trade with a low-type buyer (qSB < qFB()), in order
to reduce the rent that must be left to a high-type buyer. But then, if the
buyer selects the option designed for a low type, it becomes common knowl-
edge that the buyer has a low type, and it is then in the best interest of the
buyer and the seller to renegotiate the terms of the contract and replace the
second-best level of trade, qSB, with the e¢cient (i.e. first-best) one, qFB().
This increases the total surplus by W = W


qFB()


W


qSB()


> 0,

where W = q  c(q), and the two parties can split this additional surplus
as they wish by adjusting the transfer to t = tSB + W , where  2 [0, 1]
denotes the share of the gain W that accrues to the seller. Of course, if
this renegotiation is anticipated, then a high-type buyer will anticipate that
reporting a low type will lead to qFB() > qSB rather than to qSB, and thus a
larger rent (based on qFB() rather than on qSB) will have to be paid to keep
the buyer reporting a high type. Thus, if the seller is unable to commit not
to renegotiate, even bilaterally, then the information becomes more costly to
acquire; this, in turn, may imply that full information disclosure is no longer
optimal. That is, while under full commitment the revelation principle tells
us that, without loss of generality, one can restrict attention to mechanisms
where the buyer truthfully reports his type, under limited commitment, it
may become optimal to elicit less information.

1.3 A More General Treatment

1.3.1 Framework

The agent has a utility u(q, t; ), where q 2 Q represents a "real" dimension
(e.g., the volume of trade, the quality of a project, the amount of public
good being provided, etc.), t 2 R is the transfer to the principal, and  is the
agent’s type; this utility is quasilinear with respect to the transfer t:

U(q, t; ) = V (q; ) t.

The agent’s type is distributed over  = [, ̄] according to a density f(·)
and cdf F (·). The principal’s utility is given by t C(q, ).
Under complete information, the principal solves

max
q,t

t C(q, )

s.t V (q; ) t  0.
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Since the principal wishes to maximize t, the agent’s participation constraint
will be binding; thus, for a given q, the principal sets the transfer to t =
V (q; ) and thus chooses q so as to maximize total surplus:

max
q
W (q; ) = V (q; ) C(q; ).

Assuming that W is concave in q, the first-best level of q, qFB(), is such
that:

@V

@q
(q; ) =

@C

@q
(q; ).

The corresponding transfer is then tFB() = V (qFB(), ).
From now on, we will consider an incomplete information setting in which

only the agent knows his type; the principal must therefore account for incen-
tive compatibility. To characterize the optimal contract, we will decompose
the problem into two steps: first, we will characterize the set of "feasible" (i.e.,
incentive-compatible and individual rational) allocations — this is the “im-
plementation” stage; second, we will look for the optimal allocation within
this feasibility set — the “optimization” stage.

1.3.2 Implementation

An allocation rule f can be written as

f :  ! A = Q R
 7! f() = (q(), t())

Revelation Principle

From the Revelation Principle, we know that any implementable allocation
must be incentive compatible; that is, if there exists a revelation mecha-
nism (M, g :M ! A) that triggers a response h :  ! M implement-
ing f (that is, such that f = g  h), then it must satisfy: 8, ̃ 2 ,

U (f () , )  U

f

̃

, 

. Conversely, since there is a single agent here

(so that the concepts of dominant strategy, Bayesian, and Nash equilibrium
coincide), the multiplicity of responses is not too troublesome (since it is not
too much of an issue for the implementation in dominant strategies). There-
fore, in what follows we will restrict our attention to direct mechanisms that
are incentive-compatible.
Letting

r() = V (q(); ) t()
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denote the agent’s rent, the relevant constraints can be expressed as:

r()  0,

r() = max
̃
V (q(̃); ) t(̃).

We will make the following assumption, known as the Spence-Mirrlees
condition (a.k.a. the single-crossing property):
Assumption: 8 2 , 8q 2 Q,

@2qV (q; )  0. ((SM+))

That is, the higher the agent’s type , the higher his marginal utility; that
is, an increase in the agent’s type means that the agent is willing to trade
more, and this is true at all levels of trade q. This assumption translates into
requiring a constant sign on the second partial derivative @2qV , i.e., requiring
the marginal utility to be monotone in . In the Spence-Mirrlees condition
stated above, the marginal utility is monotonically increasing; however, the
single-crossing property is equally valid for a monotonically decreasing mar-
ginal utility: we will refer to the former as the Spence-Mirrlees condition
with positive sign (SM+), and the latter as the Spence-Mirrlees condition
with a negative sign: 8 2 , 8q 2 Q, @2qV (q; )  0 (SM ). The follow-
ing theorem provides a characterization of incentive-compatibility under the
Spence Mirrlees condition:

             Theorem 1 Assume the Spence-Mirrlees condition hods with a positive sign
(SM+). Then (q(·), r(·)) is incentive-compatible if and only if

(
r() = r() +

R 

@V (q(s); s) ds,

q() is non-decreasing.

Proof. We prove the two implications in sequence.
Step 1: )) Suppose that the Spence-Mirrlees condition holds with a

positive sign, and assume that (q(·), r(·)) is incentive-compatible. Incentive
compatibility for type  implies

V (q(); ) t()  V (q(̃); ) t(̃),

which we can write in terms of rent as

r()  r(̃) + V (q(̃); ) V (q(̃); ̃). (1.3)

Similarly, incentive compatibility for type ̃ implies

V (q(̃); ̃) t(̃)  V (q(); ̃) t(),
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which in terms of rent yields

r(̃)  r() + V (q(); ̃) V (q(); ). (1.4)

Combining (1.3) and (1.4) leads to

V (q(̃); ̃) V (q(̃); )  r(̃) r()  V (q(); ̃) V (q(); ),

and thus (rewriting the two outer expressions using integrals):

Z ̃



@V (q(̃); s) ds 
Z ̃



@V (q(); s) ds

()
Z ̃



h
@V (q(̃); s) @V (q(); s)

i
ds  0

()
Z ̃



Z q(̃)

q()

@2qV (q, s) dq ds  0.

Since the integrand @2qV (q, s) is positive from the Spence-Mirrlees condition
(SM+), and the value of the integral is non-negative, it follows that the
boundaries of the two integrals must move in the same direction (that is,
̃ >  implies q(̃)  q()); therefore, q(·) is non-decreasing.
This in turn implies that q(·) is continuous almost everywhere; it follows

that

r() = max
̃
V (q(̃); ) t(̃)

is almost continuously continuously di§erentiable, and its derivative satisfies

ṙ() = @V (q(); ).

Integrating both sides of this equation from  to , we obtain

r() = r() +

Z 



@V (q(s); s) ds,

which completes the proof of step 1.
Step 2: () Define '(̃; ) to be the payo§ that an agent of type  gets

from claiming to be type ̃:

'(̃; )  V (q(̃); ) t(̃).
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We have:

'(; ) '(̃; ) = [V (q(); ) t()]
h
V (q(̃); ) t(̃)

i

= r()
h
r(̃) + V (q(̃); ) V (q(̃); ̃)

i

=
h
r() r(̃)

i

h
V (q(̃); ) V (q(̃); ̃)

i

=

Z 

̃

@V (q(s); s) ds
Z 

̃

@V (q(̃); s) ds,

where the last equality stems in part from the assumption (r() = r() +R 

@V (q(s); s) ds) and in part from the identity V (q(̃); )  V (q(̃); ̃) =

R 
̃
@V (q(̃); s) ds. Rewriting the last expression as a double integral leads

to

'(; ) '(̃; ) =

Z 

̃

h
@V (q(s); s) ds @V (q(̃); s)

i
ds

=

Z 

̃

Z q(s)

q(̃)

@2qV (q; s) dq ds

 0,

where the inequality follows from (SM+). Thus, an agent of type  maximizes
his net payo§ by truthfully revealing his type.
Note the similarity between this analysis and our analysis in the example

of price discrimination above:

• In both instances, we use the incentive-compatibility conditions to re-
late the evolution of the agent’s rent, r (), to the quantity profile q ();
more specifically, thanks to the Spence-Mirrlees condition, incentive-
compatibility boils down to a monotonicity requirement (q(·) must be
non-decreasing), and to ṙ () = @V (q(); ).

• In the previous two-type setting

 = {, ̄}


where V (q; ) = q, we

had similarly q̄  q and

r̄  r =   q =
Z ̄



@(q(s)) ds.

• Likewise, with more than 2 types, 1 < 2 < ... < n, the sequence
of outputs should be (weakly) increasing (q1  q2  . . .  qn) and the
rents should satisfy rk+1  rk = (k+1  k)qk.
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1.3.3 Optimization

Having determined the set of feasible mechanisms, we now seek to charac-
terize the optimal one.
Under complete information, the first-best outcome is (qFB(), tFB()),

where qFB() solves
@qV (q; ) = @qC(q; ),

and where tFB() = V (qFB(), ); that is, under the first-best, the principal
extracts all the agent’s surplus (rFB() = 0), and thus chooses q so as to
maximize the total surplus W (q; ).
Under incomplete information, the principal solves

max
q(·),t(·)

Z ̄



[t() c(q(); )] f() d

s.t. V (q(); ) t()  0 8

V (q(); ) t()  V (q(̃); ) t(̃) 8, ̃.

Using the rent r() = V (q(); )t() and the above analysis, we can rewrite
this maximization problem as

max
q(·),r(·)

Z ̄



[V (q(); ) c(q(); ) r()] f() d

s.t. 8 2 , r()  0, (1.5)

8 2 , r() = r() +

Z 



@V (q(s); s) ds, (1.6)

q (·) is increasing. (1.7)

Let us introduce one additional monotonicity assumption:
Assumption: 8 2 ,8q 2 Q,

@V (q; )  0. ((M+))

Together with (SM+), these two assumptions assert an increase in the type
 has a similar qualitative impact on the agent’s utility (and thus on his
willingness to participate) and his marginal utility (and thus on how much
he is willing to trade).
Since the principal wants to minimize the agent’s rents, at least one par-

ticipation constraint must be binding (otherwise, the principal could decrease
all rents uniformly without a§ecting neither the incentive constraints nor the
monotonicity requirement). Conversely, under the assumption @V  0, every
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type of agent is willing to participate whenever the lowest type is willing to
do so. It follows that the (only) binding participation constraint is that of
the lowest type : r() = 0. The incentive constraints then boil down to
(q (·) % and)

r() =

Z 



@V (q(s); s) ds.

Plugging this back into the principal’s objective function, we can rewrite her
problem as:

max
q(·)

Z ̄




V (q(); ) c(q(); )

Z 



@V (q(s); s) ds


f() d (1.8)

s.t. q() is increasing.

We can use Fubini’s theorem to switch the order of integration in the double
integral (see Figure 1.1); the integral then simplifies to

Z ̄



Z 



@V (q(s); s) ds f()d =

Z ̄



"Z ̄

s

f() d

#
@V (q(s); s) ds

=

Z ̄



[1 F (s)] @V (q(s); s) ds

=

Z ̄



[1 F ()] @V (q(); ) d,

where the final step simply reflects a cosmetic change for the notation of the
generic variable of integration from s to .

s

s



̄



̄ 

Figure 1.1: Fubini’s theorem

Plugging this result back into the principal’s objective expressed in (1.8)
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yields

Z ̄



[V (q(); ) c(q(); )] f() d 
Z ̄



(1 F ())@V (q(); ) d

=

Z ̄



{[V (q(); ) c(q(); )] f() (1 F ())@V (q(); )} d

=

Z ̄



[V (q(); ) c(q(); ) ()@V (q(); )] f() d, (1.9)

where ()  1F ()
f()

denote the hazard rate. Ignoring the monotonicity
requirement (q (·) %) yields a candidate solution, q̂ (), which, for any given
, simply maximizes the integrand and is thus characterized by the first-order
condition

@qV (q̂; ) @qC(q̂; ) = ()@2qV (q̂; ).

By construction, if the solution to an unconstrained program satisfies the
omitted constraint — namely here, the condition q (·) % —, then it is also
the solution to the constrained program. Therefore, if q̂(·) is increasing, then
qSB() = q̂().
If instead q̂(·) is not increasing, then there must be some bunching: the

second-best must be constant for at least a subset of types. Guesnerie-
La§ont(JPE 1986) provide the following characterization:

• qSB() = q̂() whenever q̇SB() > 0; that is, whenever it increases, the
second-best solution qSB coincides with q̂.

• q̄ = argmaxq
R 2
1
[V (q; ) c(q; ) ()@V (q; )] f() d; that is, in a

bunching interval (where the second-best is thus constant), the output
is set so as to maximize the principal’s virtual objective given by (1.9)
over that interval.

• qSB is continuous; this provides additional conditions leading to the
determination of the boundaries of the bunching intervals.

See Figures 1.2 and 1.3.
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q̄ q̂

1 2

q



Figure 1.2: Monotonicity of qSB and bunching

Figure 1.3: Boundaries of bunching

1.3.4 Examples

Price Discrimination

Consider an interaction between a firm and a consumer. The consumer’s
utility is given by

U(q, t; ) = V (q) t,

where V 0 (q) > 0 > V 00 (q) and V 0(0) = +1, whereas the cost function of the
firm is C(q) = cq.
Using (1.9), the maximization problem of the firm can be written as:

max
q(·)

Z ̄



[V (q()) c(q()) ()V (q())] f() d,

s.t. q (·) is increasing

where () = 1F ()
f()

denotes the likelihood ratio. Ignoring the monotonicity
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requirement, the first-order condition with respect to q() yields

(  ())V 0(q̂) c = 0,

or

q̂ () = V 01


c

  ()


.

Suppose that the following assumption holds:
Assumption (Monotone Likelihood Ratio Property — MLRP ):

 () = 1F ()
f()

decreases as  increases.
Since V 01(·) is decreasing, MLRP guarantees that q̂() is increasing in

 and thus satisfies the monotonicity requirement; it follows that qSB() =
q̂ ().
The associated transfer is given by

tSB() = V (qSB()) rSB()

= V

qSB ()



Z 



V (q(s)) ds.

Note that this implies:

ṫSB() = V 0

qSB ()


q̇SB().

To implement this second-best, the firm can o§er a family of options of the
form {q(), t()}2. Alternatively, this can take the form of a single, non-
linear tari§ t = T̂ (q) satisfying

tSB () = T̂

qSB ()


.

Di§erentiating this equation with respect to  yields ṫ() = T̂ 0(q ())q̇(), and
thus:

T̂ 0(q) =
ṫ()

q̇()
= V 0


qSB ()


=

c

  ()
=

c

1 ()/
,

which is decreasing in  under MLRP . Thus, the tari§ T̂ is concave, which
in turn implies that it can be replicated as a family of a¢ne (i.e., two-part)
tari§s { (q)}2, of the form

 (q) = A() + p()q,

where p() = c
1()/ is decreasing in , and A() = t

SB()  p()qSB() is
increasing in . See Figure 1.4.
Remark: market size. If  < () or V 0(0) < c

() , then some low
types are excluded:
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A()



t

q

()

qSB() qSB(̄)

Figure 1.4: Two - part tari§s

• in the first-best, qFB() = 0 for   ̂
FB
: V 0(0) = c;

• in the second-best, qSB() = 0 for   ̂
SB
, where ̂

SB
> ̂

FB
is charac-

terized by: (  ())V 0(0) = c; thus, ̂
SB



̂
SB

= ̂

FB
(= c/V 0 (0)),

or ̂
SB
= ̂

FB
+ 


̂
SB

> ̂

FB
.

To illustrate this, consider the case V (q) = q  q2/2; we then have:

• First-best: for   ̂
FB
= c, qFB () = 1 c/;

• First-best: for   ̂
SB
= c, qSB () = 1 c/(2  1);

As usual, there is no distortion at the top (

̄

= 0 implies qSB


̄

=

qFB

̄

); as  decreases below ̄, the distortion increases, and the second-best

level is equal to 0 for a wider range of types. See Figure 1.5.

Regulation

The following example is taken from Baron & Myerson (Eca 1982). The
agent is a firm with payo§

U(q, t; ) = t q,

whereas the principal is a regulator with an objective function given by

W (q, t, ) = S(q) (1 + )t+ U = S(q) q  t.

• Under complete information (first-best, in which the regulator knows
the firm’s type ), the optimal outcome solves S 0(q) = (1 + ).
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FB SB 

q

qFB

̄

Figure 1.5: Distortion of the second best quantity

• Under incomplete information (second-best, in which the firm’s type is
the private information of the firm), qSB() solves S 0(q) = (1 + ) +

F ()
f()

(note that SM holds, and @V < 0: that is, the “good types”
are the low ones here). See Figure 1.6.

FBSB 

q

qFB



Figure 1.6: Distortion of the second best solution when the "good types" are
the low ones
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Labor-Managed Firm

Suppose that the output of the firm depends on its type  and on the amount
of labor l: q = f(l), with f 00 < 0 < f 0, and that the firm aims now at
maximizing the added value per worker:

U(l, t; ) =
f(l)K + t

l
,

where K denotes a fixed cost that needs to be recouped; the objective of the
regulator is now

W (l, t, ) = f(l)K  wl,

where w denotes the opportunity cost of employing an additional worker in
the firm.
In the first-best, the allocation of labor lFB() is increasing in , which is

intuitive: it is optimal to assign more labor to more productive firms. But
the Spence-Mirrlees condition is

@2lU = @l


f(l)

l


< 0.

It follows that only decreasing labor profiles can be implemented; as a result
of this naked divergence of objectives, there is complete bunching (“non-
responsiveness”): the second-best optimum consists in allocating a constant
amount of labor, regardless of the productivity .Lcture1

1.4 Variations

1.4.1 Multiple Outputs

Let the output q be a vector q = (q1, . . . , qn). The objectives of the agent
and of the principal respectively become U(q, t; ) = V (q1, . . . , qn; ) t and
t  C(q1, . . . , qn; ). What are the incentive-compatibility conditions here?
Suppose the Spence-Mirrlees condition with positive sign holds for each out-
put. Then, adapting the proof of Theorem 1, an output profile can be imple-
mented (with adequate transfers) if @2qiV (q(); )  0 and qi() is increasing
for each i = 1, ..., n. These conditions are however su¢cient, but not neces-
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sary. Following the steps of the proof of Theorem 1,we have:

'(, ) '(̃, ) = r() r(̃)
h
V (q(̃); ) V (q(̃); ̃)

i

=

Z 

̃

@V (q(); s) ds
Z 

̃

@V (q(̃); s) ds

=

Z 

̃

Z 

s

d

d̂


@V (q(̂); s)


d̂ ds.

A su¢cient condition to ensure that this expression is non-negative (so that
'(, ) '(̃, )  0, which implies that incentive compatibility holds) is

d

d
(@V (q(); s))  0,

that is:
nX

i=1

@2qiV (q(); s)
dqi
d
()  0.

Assuming that the Spence-Mirrlees condition holds with a positive sign for
each i = 1, ..., n, this inequality is satisfied if each of the derivatives dqi/d
is non-negative; however, the inequality can still be satisfied even if some of
these derivatives are negative, so long as the total sum is non-negative.

Example

The following example comes from La§ont & Tirole (JPE 1986). Consider
the following interaction between a firm (the principal) and an agent. The
agent’s cost is given by

c(e, )q +  (e),

where q the quantity produced,  the productivity of the firm (i.e., the agent’s
type), c(e, ) =   e represents the audited cost, which is observable and
can thus be contracted upon, whereas e denotes the managerial e§ort and is
not observed by outsiders. The regulator and the firm can thus contract on
q, t, and c, and the payo§ of the firm is given by

t cq   (e) = t cq   (  c),

which thus fits the above “multiple output” framework.
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1.4.2 Noisy Observations

Suppose now that the output q is not perfectly observed; that is, what is
only observed is a noisy version of it:

q̃ = q + ",

where " is a “white noise": E["] = 0. If agents could contract directly on
the true value q, then we have seen that the principal and the agent could
achieve the second-best through some non-linear “tari§” t = T SB (q). What
if only the noisy observation q̃ is observable?

(a) If the optimal tari§ T SB (q) is concave, then it can be replicated with
a family of two-part tari§s:


SB (q) = A() + p()q


2. But when

facing a two-part tari§ A() + p()q, choosing a given output level q
yields an expected transfer which exactly coincides with the transfer
that would apply in the absence of any noise:

E[SB (q̃)] = E[SB (q + ")] = E[A()+p()(q+")] = A()+p()q = SB (q) .

Therefore, from the point of view of the agent, even though the value
of q is observed with noise, the expected payment is exactly the one
that would be made if q were perfectly observed and the contract
were made directly on q. It follows that the family of two-part tar-
i§s,


SB (q)


2, remains optimal and as e¢cient as in the absence

of noise; that is, the fact that the output is only observed with a noise
does not a§ect the principal-agent relationship. [While we consider the
case of a white noise, the analysis applies as well to any other noise;
the tari§s then need to be adjusted for E ["]).

(b) If the optimal tari§ is not concave but still “smooth”, it can be replicated
with a family of su¢ciently convex non-linear tari§s, such that the lower
envelope of this family coincides with the original tari§ — see Figure
1.7.

Consider for instance a menu of quadratic tari§s {  (q)}2, where

  (q) = A() + p()q + bq
2.

When the agent chooses an output level q, the expected transfer is then

E[  (q̃)] = E[  (q + ")] = E[A() + p()(q + ") + b(q + ")2]

= A() + p()q +
b

2
q2() + b2

=   (q) + b
2,
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t

q

B2/2

Figure 1.7: Replication of the non-concave optimal tari§ with the family of
convex non-linear tari§s

where 2 denotes the variance of the noise ". But then, it su¢ces to
reduce   by b2 to ensure that the expected transfer coincides with the
transfer that would be implemented in the absence of any noise. There-
fore, the family of quadratic tari§s {̂  (q) =   (q) b2}2 achieves
the second-best; in other words, as long as the first two moments of the
distribution of the noise are known, then observing only the noisy ver-
sion of the output does not e§ect the e¢ciency of the principal-agent
relationship.

1.4.3 Interim Negotiation

Now suppose that agents could contract before they learn their types. While
ex post incentive compatibility must still be satisfied, ex ante contracting
replaces the ex post participation constraints (for each type of agent) with a
unique, ex ante participation constraint. As the participation constraints are
less demanding, the parties can enter into more e¢cient contracts. In par-
ticular, ex ante the principal can appropriate, through a lump sum transfer,
the informational rents that the agent can secure ex post; intuitively, this re-
duces the cost of the informational rents, and may even make them costless,
in which case the second-best contract will still involve first-best e¢ciency.
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Achieving first-best e¢ciency

To see this, note first that both parties now aim to maximize their expected
payo§s:

max
q(·),t(·)

E[t() c(q(); )]

s.t. 8 2  ,


E[V (q(); ) t()]  0, (IR)

 2 argmaxe V (q(̃); ) t(̃). (IC)

In a first-best world (thus ignoring (IC)), qFB() maximizes total surplus
W (q; ) = V (q; )  C (q; ) and, under standard concavity assumptions,
solves the first-order condition

@qV (q; ) = @qC(q; ).

For the sake of exposition, suppose that the first-best is implementable; that
is, suppose there exists a profile of transfers t(), such that (qFB(), t())
is incentive-compatible. This will always be the case if for example the
principal’s payo§ does not directly depend on the agent’s type, that is,
C(q; ) = C(q):

• adopting the non-linear tari§ T̂ (q) = C(q) would then make the agent
the residual claimant: he would thus maximize V (q; )  T̂ (q) =
V (q; ) C (q) = W (q; ) and thus choose qFB ().

• alternatively, this could be achieved with the profile of transfers t̂ () =
T̂

qFB ()


; by construction, qFB () = argmaxq V (q; )T̂ (q) implies

 = argmax
̃
V

qFB


̃

; 

 t̂


̃

.

Let r() = V (qFB(); )  t() denote the rent that an agent of type
 would obtain under the profile t () that implements the first-best, and
denote by r the expected value of this rent,

r = E[r()].

Ex ante, the principal has expected utility

E[W FB() r()] = W FB  r,

whereas the agent has expected utility r. Shifting the transfers uniformly
(e.g., increasing T̂ (q) by some amount, or all transfers t̂ () by the same
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amount) does not a§ect incentive compatibility, and allows the principal to
redistribute the surplus. In particular, the transfers

tFB()  t() + r,

allow the principal to appropriate ex-ante all the expected surplus (that is,
the principal’s ex ante utility is then equal to W FB), leaving the agent with
an ex-ante expected utility equal to 0.

Illustration: Price Discrimination

Let the payo§ of the principal (seller) be given by W (q, t) = t  cq and the
payo§ of the agent (buyer) be given by U(q, t; ) = V (q)  t. The tari§
T (q) = cq would for sure lead to the first-best level qFB but gives all the
surplus to the buyer, leaving the seller with zero profit (whatever the buyer’s
type). To maximize the seller’s profit, it su¢ces to adjust this tari§ by an
amount F ,

T FB(q)  F FB + cq,

where
F FB  E


V (qFB()) c(qFB())


= W FB.

Under the tari§ T FB, the principal appropriates all the surplus.

Risk Aversion

Thus far, we have relied on the assumption that all parties are risk-neutral.
We now relax that assumption and consider the two polar cases where either
the principal or the agent is risk-averse.

Risk-Averse Principal Suppose that, while the agent’s utility is still
given by V (q; )  t (where V 00 < 0), the principal now has an objective
function given by UP (t C(q)), where C 00 > 0 and U 00P < 0 < U 0P . The first-
best level of trade qFB() satisfies @qV (q; ) = C 0(q) and is implementable
via the tari§

T̂ (q) = C(q).

This leads indeed the agent to choose the right level of trade, qFB(), and
perfectly insures the principal against the risk about the agent’s type, but
it also gives all the surplus to the agent. As above, an optimal tari§ for the
principal then simply consists in shifting T̂ up by the amount W FB:

T FB(q) = W FB + C(q).
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With this tari§, ex post the principal obtains W FB regardless of the agent’
type ; there is thus again perfect insurance: it is the agent who ex post
bears all the risk of the particular draw of .
Remark. This no longer works if the principal’s objective is directly

a§ected by the agent’s type, i.e. if the principal’s cost function takes the
form C(q; ); in that case, the transfers

t̂() = C(qFB(); )

would no longer be incentive-compatible: the agent would seek to maximize

'

̃, 

= V (q(̃); ) C(qFB(̃); ̃),

but then
@̃'|̃= = @̃C(q

FB(); ) 6= 0;

that is, the agent has an incentive to deviate.

Risk-Averse Agent Suppose now that, while the principal’s utility is
given as before by tC(q; ), the agent’s utility is now given by UA(V (q; )
t), where V 00 < 0 and U 00A < 0 < U

0
A. In a first-best world, the principal should

therefore fully insure the agent:

t() = V (q(); ),

but this is not incentive compatible: the agent would seek to maximize his
utility:

max
̃
'

̃, 

= V (q(̃); ) V (q(̃); ̃),

where
@̃'|̃= = @V (q(); ) 6= 0.

There is thus again a trade o§ between insurance and rent extraction.
Example. Suppose that the principal’s utility is tC (q) and the agent’s

utility is given by U(q  t), where  can take on one of two values,  or ̄,
with probabilities µ and µ̄ = 1 µ respectively. Assume that U(0) = 0 and
U 00 < 0 < U 0. The principal’s maximization problem can be written as

max
q,t,q̄,t̄

W = µ

t C(q)


+ µ̄ [t̄ C(q̄)]

s.t. µU(q  t) + µ̄U(̄q̄  t̄)  0,

̄q̄  t̄  ̄q  t,

q  t  q̄  t̄.



1.4. VARIATIONS 27

The incentive-compatibility conditions can be rewritten as

r̄  r + (̄  )q

r  r̄  (̄  )q̄,

which we combine into the single condition

(̄  )q̄  r̄  r  (̄  )q.

In the first-best (i.e., absent incentive issues), the agent would be fully in-
sured: r̄ = r; therefore, it is the lower (i.e. right) IC constraint that is the
binding one. Thus, we can rewrite the principal’s problem as

max
q,t,q̄,t̄

W = µ(q  C(q) r) + µ̄(̄q̄  C(q̄) r̄)

s.t. µU(r) + µ̄U(r̄)  0

r̄  r  (̄  )q.

Assign the two constraints the Lagrange multipliers  and , respectively.
The Lagrangian is

L = W + 

µU(r) + µ̄U(r̄)


+ 


r̄  r  (̄  )q


,

and the first-order conditions are

w.r.t. q̄ : C 0(q) = ̄ ) q̄ = qFB(̄),
w.r.t. q : C 0(q) =   

µ
(̄  ) ) q < qFB(),

w.r.t. r̄ : µ̄+ µ̄U 0(r̄) +  = 0 ) U 0(r̄) =
1






µ̄
,

w.r.t. r : µ+ µU 0(r)  = 0 ) U 0(r) =
1


+



µ
.

The Lagrange multipliers  and  are positive (Lagrange multipliers are non-
negative by construction, and both constraints are necessarily binding at the
optimum), U 0(r̄) < U 0(r). Since U 00 < 0 by assumption, it follows that
r̄ > 0 > r; there is thus partial insurance.

1.4.4 Countervailing Incentives

Suppose now that, while the Spence-Mirrlees condition holds with a positive
sign, either @V < 0 or the agent’s reservation level of utility depends on the
type, U(), and increases faster than the informational rent rSB () charac-
terized above. In that case other individual-rationality constraints (i.e., for
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other types than the lowest one) may be binding. This, in turn, may a§ect
which incentive-compatibility constraints are relevant.
Example. Let the agent’s utility be given by U = q  t, where the

agent’s type  can take on one of two values  or ̄, with probabilities µ
and µ̄, respectively. Assume ̄ > , and denote the reservation utilities of
each type by U and Ū , respectively. Assume that the SM+holds, and that
@V > 0. Finally, defineU = ŪU ; we will distinguish five cases, according
to the value of U .

Case 1: U = 0, i.e. Ū = U . In that case, the analysis follows the same
steps as above, the only di§erence being that the agent’s rent is uni-
formly increased by Ū = U :

• For the high-type agent, q̄ = qFB(), such that C 0(q) = ̄: there
is no distortion at the top.

• For the low-type agent, q = q̂ < qFB(), such that C 0(q̂) =  
µ

µ̄
(̄  ).

• The rents are given by r = U and r̄ = r+(̄ )q̂, which satisfies
r̄ > Ū .

In summary,

q = q̂ < qFB(),r = U,

q̄ = qFB(), r̄ = r + (̄  )q̂ > Ū .

Case 2: U  (̄  )q̂. The above solution — which is the solution to a
relaxed problem, where the low-type agent’s participation constraint
(IR) and the high-type agent’s incentive constraint


IC

are ignored

— still satisfies the omitted constraints; in particular, r = U and r̄ =
r+(̄ )q̂ together imply r̄ > Ū . Thus the solution remains the same
as in Case 1.

Case 3: (̄)q̂ < U < (̄)qFB(). There are three binding constraints
in this case, as the high-type participation constraint


IR

starts bind-

ing; that is, setting r = U and r̄ = r + (̄  )q̂ as above would violate
IR

, since r + (̄  )q̂ < Ū . In the absence of this additional con-

straint

IR

, it would be optimal to trade at the first-best level with

a high-type agent

q̄ = qFB(̄)


but distort the level of trade assigned

to a low type , q, down to q̂, in order to reduce the rent left to a
high type ̄, r̄; but since a larger rent needs to be left anyway to meet
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the reservation level Ū of a high type ̄, there is no point distorting q
down to q̂: it su¢ces to reduce q to the level qSB that generates the
“appropriate” utility di§erential, namely, such that (̄ )q = U ; we
obtain r = U and r̄ = Ū .

q̂ < q = qSB < qFB(),r = U,

q̄ = qFB(̄), r̄ = Ū .

Case 4: (̄  )qFB()  U  (̄  )qFB(̄). In this case, only the par-
ticipation constraints matter: as the rents needed to meet both types’
participation constraints make the first-best incentive compatible, the
incentive constraints can be ignored and the second-best coincides with
the first-best:

q = qFB(),r = U,

q̄ = qFB(̄),r̄ = Ū .

Case 5: (̄  )qFB(̄) < U . In this case, the participation constraint of
the high type is binding and incentive-compatibility constraint for the
low type, namely,

r  r̄  (̄  )q̄,

becomes binding. If we ignore the other two constraints, it would be
optimal to set q to the first-best level


q = qFB()


and to distort q̄

upwards so as to reduce the rent r left to a low type : that is, maxi-
mizing

max
q̄,q

µ̄

̄  q̄  c(q̄) r


+ µ


q  c(q) r̄ + (̄  )q̄


,

would lead to q = qFB() and

q̄ = q̃  ̄ +
µ

µ̄
(̄  ) > qFB(̄).

We can then distinguish two subcases:

i) If U < (̄  )q̃, then distorting q̄ up to q̃ is excessive, as it would gen-
erate a higher rent di§erential than is needed to meet the participation
constraints of the two types; in that case, it su¢ces to distort q̄ to the
level just needed to accommodate the utility di§erential: that is, r̄ = Ū
and q̄ = q̄SB such that (̄  )q̄ = U , so as to accommodate r = U .
This subcase is thus the mirror image of Case 3, in which there are
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three binding constraints: both individual rationality constraints, plus
the incentive constraint of the low type. We have:

q = qFB(), r = U,

q̃ > q̄ = q̄SB > qFB(̄),r̄ = Ū .

ii) If insteadU  (̄)q̃, then the solution to the relaxed problem, where
we ignore the high-type agent’s participation constraint


IR

and the

low-type agent’s incentive constraint (IC), which is given by q = qFB()
and q̄ = q̃ > qFB(̄), so r̄ = Ū and r = Ū (̄)q̃, satisfy the omitted
constraints; in particular, r̄ = Ū and r = Ū  (̄  )q̃ together imply
r > U . This subcase is thus the mirror image of Case 2, in which two
constraints are binding: the individual rationality constraint of the high
type and the incentive constraint of the low type. We have:

q = qFB(), r = U,

q̄ = q̃ > qFB(̄),r̄ = Ū .

Remark: The second-best is continuous with respect to the utility dif-
ferential U (see Figure).

1.4.5 Stochastic Contracts

Suppose that the principal and agent consider contracting on lotteries of
the form (q̃, t̃), where q̃ and t̃ can now depend on the realization of some
random variable. The principal then seeks to maximize her expected utility,
E[t̃C(q̃; )], whereas the agent maximizes his expected utility, E[V (q̃; )t̃].
Both parties are risk-neutral with respect to transfers, and thus any lottery
on t̃ is formally equivalent to a deterministic transfer equal to the expected
value E


t̃

. Furthermore, if C is convex in q (i.e., @2q2C(·) > 0), then exposing

the principal to random shocks on q is not e¢cient; the same applies to
the agent if V is concave in q (i.e., V 00(·) < 0). In such a case, under
complete information there is thus no role for lotteries, as both agents would
prefer a deterministic contract: replacing a lottery


t̃, q̃

with for example

the deterministic contract

E[t̃],E[q̃]


would benefit both parties. Yet, under

incomplete information, lotteries can be helpful if they relaxing incentive
constraints.
To see this, define '(̃, ) = E[V (q(̃); ) t(̃)]; a lottery may then help

if it the expression of ' is concave in q

̃

, as it reduces the potential benefit

from cheating.
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Example. Suppose that the two parties’ objectives are respectively given
by U = V (q; ) t and W = t cq. The principal’s program can be written
as:

max µE

t̃ cq̃


+ µ̄E

h
et ceq

i

(IR) : E

V (eq; )et


 0,


IC

: E
h
V (eq; ̄) ēt

i
 E


V (eq; )et


,

or, equivalently, in terms of rents r (.):

max µE

V (eq; ) ceq  er


+ µ̄E

h
V (eq; ̄) ceq  er

i

(IR) : E [er]  0,

IC

: E
h
er
i
 E [er] + E


(eq)


.

where
(eq)  V (eq; ) V (eq; ).

If  is convex in qthere is no scope for lotteries. However if  is concave
E((eq))<(E


eq

), in which case opting for a lottery for q may relax the

high-type agent’s incentive constraint.
To see this, suppose first that the parties restrict attention to determin-

istic contracts. The principal will thus set r = 0 and r̄ = 

q

, q̄ = qFB


̄


and then choose q so as to maximize

Ŵ (q; )  V (q; ) cq 
µ̄

µ
(q).

But then, if the virtual objective Ŵ (q; ) has several optima in q (which is
indeed possible if  is concave in q), then replacing any deterministic solution
with a lottery over these various solutions would (i) not a§ect the principal’s
objective (since by construction it is constant over these solutions), but (ii)
relax the high-type agent’s incentive constraint


IC

; the principal could

then improve over deterministic contracts by reducing r.

1.4.6 Dynamics

Suppose now that there are two periods,  = 1, 2; in each period  , the
parties’ payo§s are as before given by t  C(q , ) for the principal and
V (q , )  t for the agent (note that, by assumption, the agent’s type is
constant over time). The two parties maximize the (expected) sum of their
discounted payo§s, using the same discount factor,  = 1

1+r
.
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The principal’s program can thus be written as:

max
q1,t1,q2,t2

E[t1() C(q1(); )] + E[t2() C(q2(); )]

s.t. 8 2 , (IR) : V (q1(); ) t1() + [V (q2(); ) t2()]  0
(IC) :  2 argmax

e
V (q1(̃); ) t1(̃) + [V (q2(̃); ) t2(̃)]

Dividing all payo§s by1 +  leads to:

max
q1,t1,q2,t2

1

1 + 
E[t1() C(q1(); )] +



1 + 
E[t2() C(q2(); )]

s.t. 8 2 , (IR) :
1

1 + 
V (q1(); ) t1() +



1 + 
[V (q2(); ) t2()]  0

(IC) :  2 argmax
e

1

1 + 
V (q1(̃); ) t1(̃) +



1 + 
[V (q2(̃); ) t2(̃)]

This program is now formally identical to the program that, in a static (i.e.,
one-period) context, the principal would be restricted to use a stochastic
contract, leading to (q1 () , t1 ()) with probability 1

1+
and to (q2 () , t2 ())

with probability 
1+
. Therefore:

• If in the static context the optimal contract is deterministic, implying
that it would be optimal to choose a “degenerate” stochastic contract
where (q1 () , t1 ()) = (q2 () , t2 ()), then in the dynamic context it
is optimal to have a stationary contract, with the same terms in both
periods.

• The argument carries over to situations in which it would be optimal to
rely on lotteries in the static context: it is always possible to “add” to
the lottery a second step in which a binary random variable would be
drawn (with probabilities 1

1+
and 

1+
), and then implement the same

outcome of the lottery, whatever that of the binary variable; likewise,
in the dynamic context it would be optimal to rely on the static lottery,
and then stick to the realization of this lottery over the two periods.

Remark: independent types. The above analysis relies on the as-
sumption that the agent’s type is fixed once and for all. In the other polar
case in which it is drawn independently in each period then, at the begin-
ning of the second period, the principal and the agent would have symmetric
information about 2, the agent’s type in period 2. The same logic as above
would then lead the principal to o§er a contract replicating the optimal static
contract with ex post negotiation for the first period, and the optimal static
contract with interim negotiation for the second period.
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Remark: commitment. The above analysis relies also heavily on the
parties’ commitment abilities. For example, the principal commits to pay
“for ever” a rent to high-type agents, but would have an incentive to renege
on her promise in later periods. Likewise, the parties commit themselves to
stick “for ever” to ine¢cient levels of trade if the agent turns out to be of
a low type, but once the agent has revealed his type in the first period,
then in the subsequent periods the parties would have a joint interest to
replace the original, ine¢cient contract with a more e¢cient one (sharing the
additional gains from trade). We briefly discuss below these two issues in turn.
Before that, we note here that, in the absence of commitment, the revelation
principle does not apply: while a direct mechanism would require the agent
to reveal all his information at the beginning of the first period, it may be
desirable to have this information revealed only progressively. Yet, Bester
& Strausz (Econometrica 2001) o§er a modified version of the revelation
principle and show that, without loss of generality, the parties can restrict
attention to contracts:

• that o§er as many options as there are agent types;

• and such that a given type  picks the option designed for that type
with positive probability.

Unilateral renegotiation. Suppose that the parties cannot commit them-
selves beyond the current period (spot contracting). This implies that any
rent promised to a high-type agent has to be paid in the first period; but
this, in turn, may lead a low-type agent to pretend having a high type, in
order to pocket the associated rent, and then reject any contract in the sub-
sequent periods (“hit-and-run” strategies). As a result, it may be impossible
to pay the rent needed to induce truthful revelation in the first period (this
phenomenon is referred to as the “ratchet e§ect”: the inability to pay out
informational rents leads high-type agents to behave as low-types ones).
Example: Suppose that the agent’s utility is given by qt and that there

are two types,  and  > , and T periods; any contract that induces the
agent to reveal his type in the first period will lead to e¢cient trade in the
following periods; thus, the rent from mimicking a low type would be

R = (  )[q
1
+ (...+ T1)qFB] = (  )


q
1
+ 

1 T

1 
qFB


.

But since the principal cannot credibly commit to pay any rent in the future,
the whole rent has to be paid in period 1, which implies that the transfer to
a high-type must be equal to

t1 = q R.
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As T ! 1, and  ! 0, R ! 1 and thus t1 ! 1; but then, a low-type
agent would have an incentive to pretend having a high-type, so as to benefit
from t1 — and this, regardless of the actual levels of trade q1 and q̄1, as long
as they di§er from each other: while the agent is then expected to trade qFB

at the “full” price ̄qFB in each of the following period, a low-type agent
that cheats in the first period is then free to refuse any trade later on, which
makes the cheating deviation profitable. In other words, for T and/or  large
enough, it is not possible to have the agent’s type fully revealed in the first
period.
Bilateral renegotiation. Suppose now that the parties can commit over

future periods, but are unable to commit not to renegotiate the original
contract. Under full commitment, solving the rent vs. e¢ciency trade-o§
would lead the principal to distort the levels of trade o§ered to low types
(e.g., qSB < qFB in the above two-type example). But now, once the agent
has revealed his type it is no longer possible to stick to ine¢cient levels in the
future periods: the parties would then replace the ine¢cient level of trade
qSB


with the e¢cient one


qFB


. The implication is that revealing the

agent’s type is more costly, as then the rent that has to be paid is based on
the higher, e¢cient level of trade for the future periods; this, in turn, may
reduce the pace at which it is optimal to have the information revealed.
Example: Consider the same two-type example as above, and suppose

that, in the first period:

• type  chooses q
1
with probability 1;

• type ̄ choose q̄1 = q̄FB with probability 1  and q
1
with probability

.

If the principal observes qFB in period 1, then he knows for sure that
the agent has a high type; in the second period, the quantity will thus be
q2 = qFB; by contrast, observing q

1
does not fully reveal the agent’s type:

the principal’s revised belief are then that the agent is of high type with
probability µ2 =

µ(1)
µ(1)+µ , leading to q2() such that:

C 0(q
2
) =  

µ̄2
µ
2


̄  


=   

µ

µ


̄  


.

If  = 0 (in which case the agent fully reveal his type in period 1), then q
2

is e¢cient: q
2
= qFB; however, by only partially revealing his type (i.e., by

randomizing between the two levels of trade in period 1), the agent entertains
some ambiguity in the second period, which allows the parties to credibly



1.5. REFERENCES 35

commit to maintaining a lower level of trade (and the more so, the larger ),
which in turn allows the principal to reduce the total rent that needs to be
paid to the agent, equal to


̄  

 
q
1
+ q

2
q
2


.
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