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Chapter 1

Moral Hazard

1.1 Introduction

Asymmetric information

1. Adverse selection: Mechanism designer seeks to have agents report
certain information.

2. Moral hazard: Mechanism designer seeks to have agents take certain
actions.

Examples

• salesman’s e§ort

• managers’s decision

These situations involve a trade-o§. In adverse selection, the trade o§ is
between e¢ciency and cost (information rent). In moral hazard situations, we
have a similar trade-o§, this time between e¢ciency and the cost of incentive
compatibility. This cost takes two forms:

1. Risk-sharing, and

2. Rents.

We will look at two simple illustrations of these two costs.

1



2 CHAPTER 1. MORAL HAZARD

1.1.1 E¢ciency versus Risk-Sharing

Consider an interaction between two parties. The principal, a firm, seeks to
maximize q  w, where q is the output and w is the wage; the price of the
output is normalized to one. The agent, a worker, has utility u(w)e, where
e is the e§ort the agent exerts. We assume that the agent has a reservation
level of utility û = u(ŵ), where u0 > 0 > u00: u is concave, and thus the agent
is risk-averse. The output can take one of two values:

q =


Q with probability p
0 with probability 1 p

The agent can choose either to work with e§ort level e = E, in which case
the probability that the project is successful p is pE; or to shirk and exert
e§ort e = 0, in which case the probability of success p is p0 < pE. We will
assume that pEQ E  p0Q, û, so that e = E is e¢cient.
The timing of the interaction is as follows:

• First, the principal o§ers a contract to the agent.

• The agent then accepts or refuses the contract.

• If the agent refuses the contract he gets a reservation utility û. If the
contract is accepted, the agent then chooses the level of e§ort e 2
{0, E}, which is unobservable by the principal.

• Finally, as a result of the agent’s choice, a quantity q is produced.

Complete Information

Under complete information in which all is observable, a contract can specify
the e§ort level e = E and a wage schedule of the form w̄ if q = Q and w if
q = 0. The principal’s profit-maximization problem is

max
w̄,w

pEQ (pEw̄ + (1 pE)w)

s.t. pEu(w̄) + (1 pE)u(w) E  û (IR)

Since the agent is risk-averse (u00 < 0) whereas the principal is risk-neutral,
the optimal contract is such that w̄ = w (perfect insurance); the wage level
is then set so as to meet the agent’s participation constraint: and u(w) =
u(w̄) = û + E. The condition pEQ  E  p0Q then ensures that this
contract is better than inducing the agent to exert no e§ort (e = 0), whereas
pEQ E  û ensures that contracting is better than no contracting.
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Incomplete Information

Now suppose that the principal does not observe the agent’s e§ort level,
but only the output. The parties can then only contract on a wage sched-
ule (w̄, w). The principal must still meet the participation constraint of the
agent, but must now moreover take into account incentive-compatibility con-
siderations. Assuming that the principal would like to induce the e§ort level
e = E, the principal’s profit-maximization problem thus becomes

max
w̄,w

pEQ [pEw̄ + (1 pE)w]

s.t.
pEu(w̄) + (1 pE)u(w) E  û, (IR)

pEu(w̄) + (1 pE)u(w) E  p0u(w̄) + (1 p0)u(w). (IC)

We can rewrite (IC) as

(pE  p0)| {z } (u(w̄) u(w))| {z }
> 0 bonus

 E.

Since pE > p0, it follows that the bonus must be positive, and thus w̄  w:
the agent is no longer perfectly insured by the principal. Since it is e¢cient
to insure the agent as much as possible, this constraint is binding:

u(w̄) u(w) =
E

pE  p0
.

Using this to express u(w̄) as a function of u(w), the participation constraint
(IR) can be rewritten as

u(w) +
pEE

pE  p0
 E  û.

Since the principal wants to minimize wages, this participation constraint is
binding, which leads to:

u(w) = û+ E 
pEE

pE  p0
< û+ E,

u(w̄) = û+ E +
(1 pE)E
pE  p0

> û+ E.

Using Jensen’s inequality,1 it can be checked that the expected wage in the
second-best world is higher then the first-best wage, to compensate the risk-
averse agent for the risk taken (see Figure 1.1). The risk premium is r =
E[wSB] wFB.
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u

û+ E

wwSB w̄SBE[wSB]wFB

Figure 1.1:

That e§ort provision is e¢cient in the first-best world does not guarantee
that it remains e¢cient in the second-best world; this also depends on the
size of the risk premium. Indeed, if:

pEQ E  û > 0 > pEQ E  û r,

then it is no longer optimal to induce the agent to exert e§ort; instead:

• If p0Qbu > 0, the second-best is to induce the agent to exert no e§ort:
e = 0, w = ŵ (distortion of the level of e§ort);

• If p0Q  bu < 0, it is better not to contract (distortion of the level of
trade).

1.1.2 E¢ciency versus Rent

Assume now that the worker, too, is risk-neutral: u(w) = w, but has limited
liability:

w(q)  ŵ. (LL)

That is, the agent is always free to walk away from the job, should the
contracted wage fall below his reservation wage.

Complete Information

Under complete information, the parties can contract on the e§ort level (the
principal will pay a non-zero wage only if e = E) and the output (w(q) = w

1For any concave function f (x), E [f (x)]  f (E [x]).
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if the output q is low, and w(q) = w̄ if the output q is high). The principal’s
profit-maximization problem is thus

max
w̄,w

pEQ [pEw̄ + (1 pE)w]

s.t.
pEw̄ + (1 pE)w  E  ŵ, (IR)

w, w̄  ŵ. (LL)

Ignoring (LL), the principal and the agent only care about the expected
wage we = pEw̄ + (1  pE)w and, as the principal wants to minimize it,
the participation constraint is binding and yields we = ŵ + E. Conversely,
setting w = w̄ = ŵ + E yields the desired expected wage and satisfies (LL);
this is thus an optimal contract in this first-best. That is, limited liability
has no e§ect on the first-best solution.

Incomplete Information

Under incomplete information, the principal cannot observe the agent’s e§ort
level and can only contract on a wage schedule (w̄, w). Assuming that the
principal would like to induce the e§ort level e = E, the principal’s problem
becomes:

max
w̄,w

pEQ [pEw̄ + (1 pE)w]

s.t.
pEw̄ + (1 pE)w  E  ŵ, (IR)

pEw̄ + (1 pE)w  E  p0w̄ + (1 p0)w, (IC)
w, w̄  ŵ. (LL)

Using as variable the base wage w = w and the bonus b = w̄  w, the
participation constraint boils down to

w + pEb  ŵ + E,

whereas the incentive constraint can be rewritten as

w + pEb E  w + p0b () b 
E

pE  p0
.

The bonus must therefore be positive, which in turn implies that, or the two
limited liability constraints (w,w+ b  ŵ), only the former one (for the base
wage w) matters. The principal problem can thus be expressed as:

max
w̄,w

pEQ (w + pEb)

s.t.
w + pEb  ŵ + E, (IR)

b  E
pEp0

, (IC)

w  ŵ. (LL)
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max
w,w̄

pEQ [pEw̄ + (1 pE)w]

Which of the three constraints are binding? If we ignore the participation
constraint (IR), the other two must be binding and determine the wage
schedule: w = ŵ from (LL) and b = E

pEp0
from (IC); but then, the partici-

pation constraint is indeed satisfied:

w + pEb = ŵ +
pEE

pE  p0
= ŵ + E +R > ŵ + E,

where

R 
p0E

pE  p0
(1.1)

is the rent that the principal has to leave to the agent on top what is needed
to accommodate the limited liability and incentive constraints. Thus, in the
second-best world, the participation constraint is not an issue in presence of
limited liability: it is instead the limited liability constraint that binds.
The cost of inducing the first-best level of e§ort is not just the cost of

e§ort E, but E + R; the principal must pay more than the cost of e§ort.
Therefore, if:

pEQ E  ŵ > 0 > pEQ E  ŵ R,
then:

• If p0Qŵ > 0, the second-best is to induce the agent to exert no e§ort:
e = 0, w = ŵ;

• If p0Q ŵ < 0, it is better not to contract.

Variant

Consider the following variant of the above model:

• pE = 1 and p0 = 0: the project succeeds for sure if the agent chooses
to work (e = E), and fails for sure otherwise (e = 0);

• there is no cost to e§ort, but instead the agent enjoys a private benefit
B if he chooses to shirk.

In the first-best, e = E is e¢cient wheneverQ > B, in which case the firm
o§ers a wage w = ŵ for e = E. In the second-best, limited liability w  ŵ,
and incentive compatibility requires w̄w  B. At the (profit-maximizing)
optimum, both constraints are binding and thus w̄ = ŵ + B (which in turn
implies that the participation constraint is satisfied: w̄ > ŵ). If

QB  ŵ < 0 < Q ŵ,

it can be the case that e¢cient trade is not taking place.
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1.2 The Role of Statistical Inference

The principal’s goal is to detect what the agent has done by observing related
variables, i.e. variables related to those that are relevant but not observable.
In general, the principal will observe imperfect signals of the agent’s choice.

1.2.1 The Inference Problem

In the above examples, the principal seeks to infer the agent’s unobserved
e§ort e from the observed output q. Suppose more generally that there are
n output levels q1 < q2 < . . . < qn, and the firm o§ers wages based on the
realization of the output, w1 < w2 < . . . < wn. A natural question that arises
is, should the wage increase with the observed output level? The answer is,
“Not necessarily”.
To see this, consider the following example:

• the agent is risk-averse (but no limited liability)

• three output levels, q < q̂ < q̄

• two levels of e§ort, e 2 {0, E}

• the probability distribution of the various outputs, given the agent’s
e§ort level, is as follows:

p q q̂ q̄
e = 0 9/10 1/10 0
e = E 1/10 0 9/10

Assuming that the principal wants to induce the agent to exert e§ort
(e = R), what is the second-best optimal wage schedule, w (q) = (w, , ŵ, w̄)?
In the absence of limited liability constraints it is optimal to punish the agent
“infinitely” if q̂ is observed: ŵ = 1, as observing q̂ would reveal that the
agent shirked. This, in turn, would su¢ce to provide the e§ort incentives,
and thus full insurance is possible: w = w̄, where the wage level is set so as
to meet the agent’s participation constraint: u(w) = u(w̄) = û + E. Thus,
the optimal wage schedule is not monotonic, but instead goes down steeply
when the output increases from q to q̂, before increasing as steeply when the
output increases from q̂ to q̄.



8 CHAPTER 1. MORAL HAZARD

1.2.2 Full Inference

Suppose that the output level is given by q = q(e)+", where q(·) is one-to-one
and where the noise " is distributed over the support [,] according to
the c.d.f F (·). The e§ort level chosen by the agent thus a§ects the support.
Thus, whenever the agent deviates from a prescribed e§ort level, there is a
positive probability that the deviation will be detected. For example, if the
agent is asked to choose eFB, and chooses instead ê < eFB, then the support
of the output moves from


eFB , eFB +


to [ê, ê+], and thus the

deviation is detected whenever q 2 [ê, eFB ), or " 2

, eFB  ê


,

that is, it is detected with probability F

eFB  ê


. It follows that the first-

best is implementable at no additional cost if you can su¢ciently punish the
agent.
Mirrlees (1975, RES 1999) shows that the argument extends to some

situations where deviations are never detected for sure. Suppose for example
that "  F (·) over R, where F (") ! 0 as " ! 1, and F (")/f(") ! 0 as
" ! 1. (This last condition simply says that the cdf F (·) goes to zero
faster than the density f(·) does; it is satisfied for example by the normal
distribution.)
In a first-best world, the principal’s profit-maximization problem is

max
e,w(q)

E[q  w(q)|e]

s.t. E[u(w(q)) e|e]  û

Assuming that the agent’s utility function is increasing and concave with the
wage (u0 > 0 > u00), it is then optimal for the principal to provide full insur-
ance and to set the wage so as to meet the agent’s participation constraint:
w(q) = w = h (e)  u1(û + e). The principal’s objective function thus
becomes (using E [q] = E [e+ "] = e)

max
e
e h(e),

where u” < 0 < u0 implies h0, h00 > 0. This objective function is thus
concave, and the first-order condition yields the first-best level of e§ort eFB:
h0(eFB) = 1.
Consider now the second-best setting, and the following schedule (it is

more convenient to express it in terms of the agent’s utility, u (w), rather
than in terms of the wage w):

u =


U if q  Q,

U  P if q < Q.
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The parameters of the compensation scheme are U , P and Q: the agent is
guaranteed a fixed utility U as long as he “delivers” an output at least equal
to Q, and incurs a penalty P otherwise.
Failing to meet the threshold Q amounts to

q = e+ "  Q() "  Q e,

and thus happens with probability F (Q e). The agent’s expected utility is
therefore given by

F (Q e)(U  P ) + (1 F (Q e))U  e = U  F (Q e)P  e.

To induce the agent to choose the first-best level of e§ort, it then su¢ces to
set P so as to satisfy the first-order condition

f(Q eFB)P = 1() P =
1

f(Q eFB)
. (1.2)

The individual-rationality condition,

U  F (Q eFB)P  eFB  û,

leading the principal, for any given Q, to set U to:

U = û+ eFB +
F (Q eFB)
f(Q eFB)

.

By assumption, F (Q  eFB)/f(Q  eFB) ! 0 as Q ! 1. Therefore,
asymptotically, reducing the threshold Q to 1 (and increasing the penalty
P to 1, so as to maintain incentives) allows the principal to implement the
first-best outcome at no additional cost.
Limitations of this approach:

• We needed to make an assumption on the distribution.

• In practice, there is a de facto upper bound on the penalty we can
impose on the agents, due to limited liability. That is, in real life,
agents will not be able to pay a fine of, say, 500 million euros.

• The penalty is chosen relying on the fact that you know exactly the
probability of very unlikely events (about the tail of the distribution).
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1.2.3 Limited Inference

We just saw several examples in which the inference problem could be fully
solved, in which case moral hazard has no bite: incentive constraints are
costless. In the remainder of this chapter, we will focus on situations of
limited inference, in which incentive constraints come at a cost.
Suppose for example that the output level q is distributed over the support

[0, Q], and that the agent can choose between two di§erent levels of e§ort,
0 and E > 0, giving rise to density functions f0(q) and fE(q), respectively.
Assume that the agent has an outside option that yields utility û. We assume
that the following condition holds:
Assumption (Monotone Likelihood Ratio Property — MLRP):

The likelihood ratio

l(q) =
fE(q) f0(q)

fE(q)

is increasing in q.
The principal wants to induce the high level of e§ort in the agent, i.e. e =

E; she must therefore choose a wage schedule w(q) that satisfies individual
rationality and incentive compatibility. The principal’s profit-maximization
problem can thus be stated as:

max
w(·)

Z Q

0

(q  w(q)) fE(q) dq

s.t.
R Q
0
u (w(q)) fE(q) dq  E  û, (IR)R Q

0
u (w(q)) fE(q) E 

R Q
0
u(w(q))f0(q) dq. (IC)

Denote the multipliers for these constraints by  and µ respectively; the
Lagrangian of this problem is

L =

Z Q

0

[q  w(q) + u(w(q)) (û+ E)

+ µu(w(q))
fE(q) f0(q)

fE(q)
 µE]fE(q) dq.

Note that , µ  0. The first-order condition with respect to w(q), for a
given q, yields

(+ µl(q)) u0(w(q)) = 1, (1.3)

where l(q) is the likelihood ratio defined above. Since l(q) is increasing in q,
the first term + µl(q) is increasing in q. Under the assumption of concave
utility, the second term u0(w(q)) is decreasing in w(q). So as q increases,
w(q) increases.
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Note: The reasoning relies on µ > 0, which indeed holds at the optimum.
To see this, note that if µ = 0, then the first-order condition (1.3) reduces
to u0(w(q)) = 1. This would imply full insurance (w(q) = w), but then a
constant wage does not satisfy the incentive constraint (IC), a contradiction.
Hence we must have µ > 0.

1.2.4 Valuable Signals

Intuitively, have more informative signals facilitate inference and thus reduces
the cost of providing incentives.

Example

Consider the following example:

• the agent is risk-neutral but has limited liability;

• the agent can choose among two levels of e§ort: e 2 {0, E};

• the output is either 0 or Q;

• the principal observes the output and another signal  which can take
two values, 0 and E, with probabilities given by the following table:

E§ort e Output q Signal 

0 q =


Q with probability p0
0 with probability 1 p0

 =


E with probability 0
0 with probability 1 0

E q =


Q with probability pE
0 with probability 1 pE

 =


E with probability E
0 with probability 1 E

We will assume further that E > 0, so that “right” signal E is more
likely when the agent exerts e§ort.

If the principal chooses to ignore the signal  when designing the contract,
then we are back to the example studied above, in which she o§ers the agent a
base wage w = ŵ and a bonus b designed to meet the incentive-compatibility
condition:

b =
E

pE  p0
,

which leaves a rent to the agent, equal to

r = pEb E =
p0E

pE  p0
.
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Suppose now that the principal includes the signal in the contract design,
and o§ers the agent a base wage w, with a bonus B only if she observes
both the high-level output Q and the “right” signal E. The incentive-
compatibility condition is then

w + EpEB  E  w + 0p0B,

which we can rearrange as

(EpE  0p0)B  E.

The minimum bonus b satisfying incentive compatibility in this contract is
thus

B =
E

EpE  0p0
,

and the minimum informational rent the principal would need to give is

R = EpEB  E =
EpEE

EpE  0p0
 E

=
0p0E

EpE  0p0

=
p0E

E
0
pE  p0

< r =
p0E

pE  p0
,

where the last inequality stems from the assumption that E > 0 (if E < 0,
it su¢ces to swap the roles of E and 0; thus, what matters if the signal
is “informative”, in the sense that E 6= 0). This rent is therefore strictly
less than the rent paid in the contract when the principal ignored the signal;
that is, the signal is indeed valuable to the principal.
Holmstrom (Bell 1979) developed the idea and showed that the principal

should base the contract on a su¢cient statistic of the signals available. That
is, any informative signal should be included in the contract. But if one of
the signals is perfectly colinear with a linear combination of the other signals,
then it need not be included in the contract.

1.3 Comments

1.3.1 Simple Case

Assume limited liability and risk neutrality. There are two possible outcomes,
0 or Q. The agent can choose any e§ort e 2 R+, in which case the probability
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of realizing the high output is p(e), where p (0) = 0 and p0 > 0 > p00, and the
cost to the agent is c(e), where c (0) = 0 and c0, c00 > 0.
In a complete-information setting, the agent seeks to maximize

max
e
p(e)Q c(e),

which is concave in e; the first-best level of e§ort eFB thus solves the first-
order condition:

p0(e)Q = c0(e).

In a second-best world, principal seeks to o§er the bonus b that maximizes

max
e
p(e)b c(e).

Define e(b) to be the solution to this maximization problem. By a revealed
preference argument, b(e) is increasing: for any b and b0, letting e = e (b)and
e0 = e (b0) denote the corresponding e§ort levels, we have: pb  c  p0b  c0

and p0b0  c0  pb0  c, which implies: (p p0)(b b0)  0. The function e (b)
can therefore be inverted; let b (e) denote the bonus needed to induce a given
level of e§ort e. The agent’s objective is strictly concave under our convexity
conditions, and thus b (e) is given by the first-order condition:

p0(e)b = c0(e), b(e) =
c0(e)

p0(e)
.

This bonus satisfies b (0) = 0 (maximizing p (e) bc (e) = c (e) indeed leads
the agent to exert no e§ort, e = 0) and increases in e. The cost of inducing
the e§ort level e is then

p(e)b(e) = c(e) + r (e) ,

where the rent
r(e)  p(e)b(e) c(e)

is such that r (0) = 0 and, using the envelope theorem:

r0(e) = p(e)b0(e) > 0.

This implies that, the rent r (e) is positive for any e > 0; it also implies that
the second-best e§ort level eSB, maximizing the principal net payo§

max
e
p(e)Q c(e) r(e),

satisfies
p0(e)Q = c0(e) + r0 (e) > c0 (e)

and is thus strictly lower than the first-best
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First-best may no longer be implementable

20Suppose now that the agent can choose from three e§ort levels, e 2 {0, E, Ē},
with associated costs 0, c, c̄, respectively. The output is either 0 or Q, where
the probabilities of realizing the high level of output Q under each e§ort level
are given by 0, p, p̄, respectively. The agent’s utility is such that the agent’s
marginal utility is equal to  > 1 as long as the utility does not exceed c,
and drops to 1 afterwards (see Figure 1.2):

u(x) =

8
<

:
x for x 

c


,

1
1


+ x for x >

c


.

u

c

 > 1

1

Figure 1.2:

Given this utility function, in a first-best world it would cost the principal
an amount

c


to compensate the agent for exerting e = E, and

c


+ c̄ c to

compensate exerting e = Ē; we will assume that the first-best e§ort level is
the middle one (E):

p̄Q
 c

+ c̄ c


 pQ

c


 0,

or:
c̄ c
p̄ p

 Q 
c

p
.

Now consider a second-best setting. The principal o§ers a base wage
(utility) u, plus a bonus u if the high-level output Q is realized. Inducing
the agent to exert E rather than 0 or Ē requires:

u+ pu c  u, u+ p̄u c̄,

or:
c̄ c
p̄ p

 u 
c

p
. (1.4)
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Therefore, if:
c

p

c̄ c
p̄ p

 Q 
c

p
,

then:

• the first-best e§ort level is E;

• and yet inducing this first-best e§ort level is infeasible in a second-best
setting, since the this range characterized by (1.4) is empty (since the
lower bound, c̄c

p̄p , exceeds the upper one,
c
p
).

The participation constraint may not be binding

This is clearly the case when the agent is subject to limited liability, as the
simple example studied in the introduction shows: incentive-compatibility
and limited liability may then be the only relevant constraints in that case,
and require the principal to leave a rent to the agent, in addition to what
would be needed to meet the agent’s participation constraint.
When the agent is not subject to limited liability but is risk-averse, wealth

e§ects may play a role, in such a way that participation may not be binding.
That is, if the agent’s utility is of the form u(w, e), increasing the e§ort e
may a§ect the agent’s risk aversion, and increasing the wealth w may also
lower the agent’s disutility of e§ort. In addition, merely replacing the agent’s
incentive constraint by the associated first-order condition is not necessarily
valid; as shown by Mirrlees (1975, RES 1999), the corresponding first-order
condition of the principal’s optimization problem may then be neither nec-
essary nor su¢cient. To avoid these issues, Grossman & Hart (Econometrica
1983) consider utility functions that are (additively and/or multiplicatively)
separable in w and e, in which case they are able to develop an alternative
approach that does not rely on the agent’s first-order condition, and which
consists in first characterizing the cost of inducing a particular e§ort level
(implementation stage), before studying the optimal choice of e§ort (opti-
mization stage).
Note: We can also interpret limited liability as an extreme form of risk-

aversion; for example, a utility of the form U = u (w)  c (e), where (see
Figure 1.3):

u(w) =


w for w  ŵ
1 for w < ŵ

,

leads to an analysis that is formally identical to the case of a risk-neutral
agent facing a limited liability w  ŵ.
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u

w

Figure 1.3:

Multi-tasking

Let there be two tasks to be assigned to either one or two agents, both with
limited liability (w  ŵ). For each task:

• the agent in charge can choose from two levels of e§ort, e 2 {0, E};

• the output level is also binary, q 2 {0, Q}, with independent probabil-
ities of success;

• the probability of realizing the high output Q given by p0 > 0 if the
agent chooses e = 0 and by pE > p0 if the agent chooses e = E.

If an agent is assigned a single task, then from the analysis of 1.1.2 (see
(1.1)), the principal must give the agent a rent

R1 =
p0E

pE  p0
.

Thus, if the principal assigns the two tasks to di§erent agents, the total
information rent he will have to pay is 2R1.
The principal can however do better by giving both tasks to the same

agent; in that case, instead of rewarding “in cash” the agent for the success
of one task, the principal can grant the agent a stake (i.e., a fraction of the
output produced) in the other task, which contributes to foster the agent’s
incentive to behave in the management of that other task. To see this,
suppose that the principal gives a bonus B to the agent only if both projects
succeed. To induce the agent to exert e§ort in both projects, the principal
needs to ensure that the agent’s expected payo§ when the agent chooses
(e1, e2) = (E,E) is weakly greater than his expected payo§ when (i) he
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chooses to work on one project but not the other ((e1, e2) = (E, 0) or (0, E));
and (ii) he chooses not to work on either project ((e1, e2) = (0, 0)):

w + p2EB  2E 

w + pEp0B  E (ii)

w + p20B (iii)

From condition (i) amounts to

pEB 
E

pE  p0
,

whereas condition (ii) is equivalent to

B 
2E

p2E  p20
=

2

pE + p0

E

pE  p0
.

Since p0 < pE  1, 2
pE+p0

> 1 and thus the last constraint is more demand-
ing than the previous one, which we can therefore ignore. Ignoring also the
participation constraint w + p2EB  2E  ŵ, the optimal contract subject
to the limited liability constraint w  ŵ and condition (iii) yields w = ŵ
and B = 2E/ (p2E  p20), which (more than) satisfies the agent’s participation
constraint: this contract gives the agent a rent

R2 = p
2
EB  2E =

p2E2E

p2E  p20
 2E =

p202E

p2E  p20
=

p0
pE + p0

2R1 < 2R1.

Thus, there is a benefit from assigning both tasks to the same agent: by
doing so, the principal can reduce the information rent by o§ering the agent
a bonus only if both projects are successful, rather than having to pay a
bonus whenever a project is successful, as she would have to do in the case
of two agents.

Commitment

Bilateral renegotiation. We begin by noting the discrepancy between what
is desirable ex ante and what is desirable ex post. Consider the following
timeline:

Initial ! Agent decides ! Final outcome
contract on e§ort realized

Ex ante, there is a trade-o§ between the provision of incentives, according to
which the agent should be made the residual claimant and therefore bear all
the risks, and e¢cient risk-sharing. But ex post, once the agent has made
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his decision, incentives are no longer an issue and the parties would therefore
benefit from sharing the risk in an e¢cient way. Thus, once the e§ort decision
is made, the principal and agent have an incentive to renegotiate the original
contract in order to optimize risk-sharing. But then, anticipating that he will
be fully insured, the agent will no longer has an incentive to exert any e§ort.
That is, while ex post the parties can benefit from renegotiating the original
contract, anticipating this renegotiation will backfire: the agent will not base
his e§ort decision on the initial contract, but rather on the anticipated final
contract.

In the same vein, in a multi-period setting the principal would ideally
wish to contract on the agent’s consumption plan. However, in practice, the
parties contract on the agent’s compensation, and the agent remains free to
borrow or save. Thus, the contract should not only provide incentives with
respect to the choice of e§ort, but also with respect to savings; in particular,
Rogerson (Econometrica 1985) shows that, the contract that would be opti-
mal if the parties could directly contract on the agent’s savings is such that,
if the agent would like to save more if he could do so secretly. However, in
later periods, there is no reason anymore to account for the agent’s incen-
tives about past savings decisions, and thus the parties would benefit from
replacing the (continuation of) the original contract with another one that is
more e¢cient for the remaining periods.

One way to alleviate this problem is to make it unclear whether the agent
has actually chosen the e§ort before the renegotiation (that is, induce the
agent to randomize). See e.g., Fudenberg & Tirole (Econometrica 1990) and
Ma (QJE 1991) for within-period contracting, and Chiappori et al. (EER
1994) for multi-period contracting.

Unilateral renegotiation. The above analysis also relies on the assumption
that the principal can commit to pay performance-based bonuses; however,
ex post, the principal may be tempted to claim that performance was poor,
even if it was actually good, in order to avoid paying the bonus. Commitment
may thus not be credible if the agent’s performance is not readily observed
by third parties such as judges or courts. One way consists in introducing
tournaments and prize systems; the principal can then commit herself to give
a prize to someone, and has no reason not to give it the best performer.
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1.4 Applications

1.4.1 Partial Insurance

Consider the example of car insurance. The agent is a driver, with wealth w
and utility u(w). With probability 0 there is no accident; with probability
i there is an accident generating a loss Li, where i = 1, . . . , n. The principal
is an insurance company, o§ering a policy that involves a fee  and reimburses
the driver an amount i (on top the fee ) in the case of an accident with
loss Li.
The insurance company’s expected profit is

V = 0 
X

i>0

i (c+ (1 + )i) ,

where c denotes a fixed transaction cost per accident, and  denotes an
additional transaction cost that varies proportionally with the amount at
stake, i. The insurance company seeks to maximize its expected profit,
subject to the driver’s participation constraint:

U = 0u(w  ) +
nX

i=1

iu(w  Li + i)  Û = 0u(w) +
nX

i=1

iu(w  Li).

Let   0 denote the Lagrangian multiplier of the participation constraint.
In a first-best world, this constraint is necessarily binding (since the principal
wishes for example to maximize the fee ) and thus  > 0; the corresponding
first-order conditions are

w.r.t.  : 0  0u0(w  ) = 0,
w.r.t. i : i(1 + ) + iu0(w  Li + i) = 0,

which we can simplify to

w.r.t.  : w   = u01

1




,

w.r.t. i :w  Li + i = u01

1 + 




.

It follows that, for i = 1, . . . , n, the driver’s net wealth w  Li + i remains
constant and equal to u01 ((1 + )/). That is, conditional on having an
accident, the driver ends up with the same net wealth: the driver is thus
fully insured against the gravity of the accident. Furthermore, if  = 0,
then w  Li + i = w   (= u01 (1/)): we have full insurance. If instead
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 > 0, the net wealth is lower in case of an accident: the driver then pays a
set amount out-of-pocket, while the insurance company covers the rest. We
therefore have a franchise contract: w  Li + i = w < w+ = w  .
Let us introduce moral hazard: the driver can now choose to exert an

e§ort to be cautious; denote this level by e, which can take one of two values
0 or E. If the driver exerts e§ort (e = E: driving carefully, locking the doors
of the car when parking, ...), exerts the low-e§ort level 0, the probabilities
of accidents are given by 0,i; otherwise, they are given by 0, i. The
insurance company’s maximization problem in this second-best setting is

max 0 
X

i>0

i (c0 + (1 + )i)

s.t. 0u(w  ) +
X

i>0

iu(w  Li + i) Ei  Û

0u(w  ) +
X

i>0

iu(w  Li + i) Ei

 0u(w  ) +
X

i>0

iu(w  Li + i) 0.

Denote the multipliers of the two constraints by  and µ respectively. The
first-order conditions are

w.r.t.  : 0 = (+ µl0)0u
0(w  ),

w.r.t. i : (1 + )i = (+ µli)iu
0(w  Li + i),

where, for h = 0, 1, ..., n,

lh =
h  h
h

denotes the likelihood ratio. If li is independent of i, then we have the same
pattern as before: the agent’s marginal utility is constant in case of accident.
In other words, when exerting e§ort only a§ects the probability of having
an accident, but not its seriousness, than it remains optimal to opt for a
fixed franchise policy. Otherwise (i.e., if the likelihood ratio li varies across
accidents), the franchise should depend not only on whether an accident
occurred, but also on its gravity.
Remark: Should we expect any correlation between the reimbursement

paid by the insurance agency and the gravity of the accident? Not necessarily;
it depends on which type of accident (the very serious ones or the less serious
ones) is mostly a§ected by the agent’s e§ort.
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1.4.2 E¢ciency Wage

Consider the following interaction between a firm (the principal) and a worker
(the agent). The agent can exert e§ort e = E; this costs the agent E and
results in output Q with probability 1. Alternatively, the agent can exert
e§ort e = 0, which costs the agent nothing but yields the output Q only
with probability p < 1, and zero output otherwise. The principal o§ers a
contract with a wage w if the observed output is Q. There is limited liability
(“no-slavery”) in that the agent is always free to walk away from the job and
start contracting with a new principal. If the worker quits, he obtains utility
Û (which is endogenous; more on this below).
The limited liability condition implies that the principal must o§er a

contract satisfying w  Û . The principal must moreover satisfy the incentive-
compatibility condition, that is, the worker must prefer exerting e§ort, in
which case he gets the wage w with probability 1 but incurs the cost E, to
shirking, in which case:

• With probability p, the project is successful; the agent then gets the
wage w.

• With probability 1 p, the project is unsuccessful; the worst the prin-
cipal can do in that case is to fire the agent, who then obtains Û on
the labour market.

The incentive-compatibility condition can thus be expressed as

w  E  pw + (1 p)Û ,

which can be rearranged to yield

(1 p)(w  Û)  E.

Under “full employment”, the agent can walk away and starts immedi-
ately a new relationship with another firm; therefore: Û = w  E. But the,
the incentive-compatibility condition becomes:

w  E  pw + (1 p)Û = pw + (1 p) (w  E)
() p (w  E)  pw,

a contradiction. In other words, full employment is incompatible with the
provision of e§ort incentives.
If instead there is some unemployment, then an agent who walks away

does not find another job immediately; the value of this outside option can
then be expressed as

Û = (1 (u)) (w  E),
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where u denotes the unemployment rate, and the discount rate  increases
with unemployment. Each firm, maximizing its expected profit subject to the
above incentive constraint, will make this constraint binding; in equilibrium,
we thus have:

w  E = pw + (1 p)Û = pw + (1 p) (1 (u)) (w  E),

or

w = w (u)  E +
pE

(1 p)(u)
.

Notice that the equilibrium wage w decreases as the rate of unemployment
u increases. For further analysis, see Shapiro & Stiglitz (AER 1984).

1.4.3 Credit Markets

Consider a firm with an initial asset A which has a project costing I > A; to
finance the project, the firm must therefore seek external investors. The firm
manager (the agent) can either “behave”, in which case the project produces
output Q with probability 1; or he can “shirk”, in which case the project
produces no output Q but the manager then enjoys a private benefit B. It
is e¢cient to finance the project when the manager behave if

Q > I.

The project is e¢cient, and Let R denote the amount the firmmust reimburse
the lender. The incentive-compatibility constraint in this problem is

QR  B,

or:
R  R̂  QB,

where R̂ represents the pledgeable income, that is, the maximal amount that
the firm can credibly repay — any higher amount R > R̂ would violate the
incentive-compatibility, implying that the firm manager will choose to shirk
— and thus no repayment would ever be made.
Note that this pledgeable income is negative when B > Q, that is, when

shirking would actually be e¢cient; in that case, while it would still be
e¢cient to undertake the project if B > I, it cannot be financed. Even if
Q > B, so that inducing the manager to behave is more e¢cient, the most a
firm can raise via external financing is

I  A  R̂,
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or
A  Â  I  R̂ = I  (QB),

where Â > 0 as long as Q < B + I. In that case, it is only the firms with
initial assets at least as large as Â who get financed — in other words, "the
rich get richer".

1.4.4 Group Lending

Consider a variant of the above model in which “shirking” still produces the
output Q with some probability p < 1 (and no output otherwise). Going
through the same steps as above, the pledgeable incomes becomes

R̂1  Q
B

1 p
,

and the associated threshold level for the initial assets becomes

Â1  I  R̂1 = I  (Q
B

1 p
).

In what follows, we will suppose that this threshold is positive

Â1 > 0


, so

that an entrepreneur with initial assets A < Â1 cannot finance his project.
Suppose now that:

• there are n such entrepreneurs, each with a project similar as the first
one (and independent realizations, in case of shirking);

• each entrepreneur’s initial asset is lower than Â1, which prevents the
entrepreneur from seeking investors on an individual basis.

We now show that, by grouping their projects, the entrepreneurs may be
able to secure financing, provided they can coordinate their e§ort decisions.
To see this, suppose first that their regroup their projects, so that the

reimbursement for one project may now depend on the outcomes of all the
projects, but keep choosing their e§orts independently from each other.
An entrepreneur’s individual incentive-compatibility constraint becomes

Q E[R]  p(Q E[R]) +B,

where E [R] denotes the expected reimbursement, given the distribution of the
outcomes of the other projects. But then, E [R] cannot exceed R̂1, which in
turn implies that the entrepreneur would need at least Â1 to secure financing.
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Suppose now that the n entrepreneurs take their e§ort decisions jointly,
so as to maximize their joint payo§. Building on the insights from section
1.3.1 on multi-tasking, the best contract then consist in leaving the entrepre-
neurs a return only if all projects are successful — that is, successful projects
should pay back the loan to unsuccessful ones. The contract must induce
the entrepreneurs to behave rather than to shirk on any k  n projects;
therefore, the following incentive-compatibility conditions must be satisfied
for k = 1, ..., n:

n (QR)  npk(QR) + kB,

or

QR 
kB

n (1 pk)
.

It can be checked that the right-hand side of RHS this condition increases in
k:

d

dk


kB

n (1 pk)


=
B

1 pk + k (log p) pk



n (1 pk)2
,

and thus has the same sign as f (x) = 1 x+ x log x, where x = pk 2 [0, 1].
Since f 0 (x) = log x < 0 on this range, f (x)  f (1) = 0.
Therefore, the most demanding constraint is the one for k = n, which

amounts to

R  R̂k  Q
B

1 pn
,

which in turn leads to

A  Âk  I  (Q
B

1 pn
),

where the threshold level Âk decreases as n increases. It is thus easier to
finance the projects by regrouping them.

1.4.5 Moral Hazard in Teams

Consider a team of two agents, where the output Q produced by the team is
equal to the sum of the agents’ contributions: Q = e1+ e2. Assume that the
cost of e§ort to Agent i is given by ci(ei), where c0i, c

00
i  0 for i = 1, 2.

In a first-best world, the agents solve

max
e1,e2

e1 + e2  (c1(e1) + c2(e2)) .

This program is concave, and the solution eFBi thus satisfies c0i(e
FB
i ) = 1 for

all i.
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Let us now turn to a second-best world, in which the agents cannot con-
tract directly on their e§ort levels, but can only share the output produced
by the team: each agent then solves

max
ei
si(Q) ci(ei),

where by constructions the agents’ shares, s1(Q) and s2(Q), must satisfy, for
any Q:

s1(Q) + s2(Q) = Q.

Assuming interior solutions, each agent i = 1, 2 will choose an e§ort eSBi
characterized by the first-order condition

s0i(Q) = c
0
i(e

SB
i ).

It follows that the first-best cannot be achieved: this would require s01(Q
FB) =

s02(Q
FB) = 1, but by construction s01 (Q) + s

0
2 (Q) = 1 for any Q, a contra-

diction.
A way out consists in introducing a “budget breaker”, so as to allow

s1(Q) + s2(Q) 6= Q (at least for output levels other than the equilibrium
one). For example:

• A smooth sharing rule such as si(Q) = QjQFB, where 1+2 = 1,
leads to ei = eFBi and gives each agent i a share iQFB.

• Alternatively, the agents could adopt a discontinuous scheme such as

si(Q) =


iQ

FB if Q  QFB,
0 otherwise.

1.4.6 Career Concerns

Suppose that there are two periods, and the output produced in period t
depend on an implicit productivity parameter , which is constant over time
and unknown to everyone, as well as on the e§ort et provided by the agent
in that period: qt =  + et, where exerting e§ort et costs the agent c(et) in
that period.
Suppose further that, in each period, the wage obtained by the agent is

equal to the expected output produced in that period.
In period 2, the agent is not incentivized to exert e§ort; therefore,

w2 (q1) = E[q2|q1] = E[|q1] = q1  e1,
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where e1 denotes the e§ort expected from the agent in period 1. It follows
that, in period 1, the agent will seek to maxzimize

max
e1
E[w1  c(e1) + w2 (q1) = w1  c(e1) +  ( + e1  e1) ,

where  denotes the discount factor attached to period 2. This leads to
e1 = e


1, characterized by:

c0(e1) = .

It follows that the agent will exert too much e§ort when  > 1 (that is, at
the beginning of the career, interpreting “period 2” as representing all the
future periods of activity), and will instead exert too little e§ort when  < 1
(towards the end of the career).
More generally, learning about the agent’s productivity is more progres-

sive (the output also depends on a noise "t, say), and this productivity may
not be constant over time. See e.g. Dewatripont, Jewitt and Tirole (RES
1999) for more discussion.
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