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Strategic Games with Incomplete Information

Static Games with Incomplete Information

There are many circumstances in which agents have private
information. Some examples are:

I A bidder does not know the other bidders’value in an auction;

I Parties do not know the voters’preferences;

I An employer does not know the skills of the employee;

I The incumbent firm does not know whether the entrant is
aggressive or not;

I ....
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Static Games with Incomplete Information

Bayesian Games

I N players with i ∈ I ≡ {1, ...,N};

I ω ∈ Ω finite set of "states of nature";

I τi : Ω→ Ti types (signal) profile with ti ∈ Ti ;

I pi : Ω→ [0, 1] prior belief with pi (ω|ti ) ≥ 0

I σ ∈ ∆ (S) ≡ ∏
i=1,..,N

∆ (Si ) strategy profile with

σi : Ti → ∆ (Si );

I υti ≡∑ω∈Ω pi (ω|ti ) ui (σ,ω) the expected payoff of type ti ;

I G ≡
〈
I ,Ω, {Si}i , {Ti}i , {τi}i , {pi}i , {υti }ti

〉
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Static Games with Incomplete Information

Bayesian Games: Interpretation

I Ω is a set of possible states of nature that determine the
physical setup of the game (payoffs);

I Ti is the set of i ’s private types that encode player i ’s
information/knowledge;

I pi is player i ’s interim belief about the state and the other
players’types.
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Static Games with Incomplete Information

Battle of the Sexes Revisited

I ω ∈ Ω ≡ {ω1,ω2} with ω1 = meet and ω2 = avoid ;

I τ1 (ω1) = τ1 (ω2) = z ;

I m = τ2 (ω1) 6= τ2 (ω2) = x ;

I p1 (ω1|z) = p1 (ω2|z) = 1/2, p2 (ω1|m) = p2 (ω2|x) = 1;

I (1/2)Eu1 ((B, σ2) ,ω1) + (1/2)Eu1 ((B, σ2) ,ω2) player 1’s
ex-ante utility if she plays B.
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Static Games with Incomplete Information

Bayesian Nash Equilibrium

Definition (Harsanyi (1967/1968))
A Nash equilibrium of a Bayesian Game is a Nash equilibrium of a
strategic game characterized by:

- Set of players (i , ti ) with i ∈ I and ti ∈ Ti ;

- Set of strategies for each (i , ti );

- Payoff function for each (i , ti ) is given by υti .

Following Harsanyi (1967/1968) we transform a game of
incomplete information in a game with imperfect information
where Nature moves first.
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Static Games with Incomplete Information

Bayesian Nash Equilibrium

Definition
σ∗ ∈ ∆ (S) is a Bayesian Nash Equilibrium if:

E [υti (σ
∗
i (ti ) , σ

∗
−i (t̃−i ) , ω̃)] ≥ E [υti (σi , σ∗−i (t̃−i ) , ω̃)]

for each σi ∈ ∆ (Si ), ti ∈ Ti and i ∈ I .
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Static Games with Incomplete Information

Example (5 - Building New Capacity - See notes!)
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Static Games with Incomplete Information

Example (6 - Public Good Provision - Proposed as exercise!)

I There are two players, i = 1, 2, who may either cooperate or
defeat in the provision of a public good;

I si ∈ Si ≡ {0, 1} is the players’strategy space, where 0 stands
for "defeat" and 1 for "cooperate";

I If agents decide to cooperate, then they sustain a cost ci ,
which is private information;

I Common-Knowledge: ci ∼ P (·) over [c, c ] with c < 1 < c ;

I The individual payoff is ui (si , sj , ci ) = max (s1, s2)− ci si ;

I Find the BNE of the public good game.
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Static Games with Incomplete Information

Example (7 - Second-Price vs First-Price Auction - Proposed
as exercise)

I n bidders whose private evaluation is v≤ vi ≤ v make a bid
bi ≥ 0;

I Each bidder observes only his own evaluation but believes that
the others’evaluations are iid and distributed according to
F ∼ [v , v ];

I The player with the highest bid wins the auction by paying the
second highest bid;

I Find:

1. that bi = vi is a weakly dominant strategy;

2. the BNE of a first-price auction (i.e. the player with the
highest bid wins the auction by paying his own bid).
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Dynamic Games with Perfect Information

I We study dynamic games where players make a choice
sequentially;

I We assume perfect information: Each player can perfectly
observe the past actions;

I Best representation by using extensive form games.
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Dynamic Games with Perfect Information

Dynamic Games with Perfect Information

Chain-Store Game

Stackelberg-Cournot Competition
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Dynamic Games with Perfect Information

Dynamic Games in Extensive Form

I N players with i ∈ I ≡ {1, ...,N};

I H set of histories with ak equal to an action taken by a player:

- ∅ ∈ H;

- if
(
a1, ...ak

)
∈ H then

(
a1, ...al

)
∈ H for each l < k;

- if
(
a1, ...ak , ...

)
is an infinite sequence such that(

a1, ...ak
)
∈ H for each k ∈N then

(
a1, ...ak , ...

)
∈ H.

I Z set of terminal histories:

-
(
a1, ...ak

)
∈ Z if it is an infinite sequence or @ ak+1 such that(

a1, ...ak+1
)
∈ H.
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Dynamic Games with Perfect Information

Dynamic Games in Extensive Form

I P : H\Z → I assignment function;

I A (h) = {a| (h, a) ∈ H} set of actions available to P (h);

I υi : Z → R;

I Γ ≡ 〈I ,H,P, {υi}i 〉.
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Dynamic Games with Perfect Information

Strategies

Definition
A strategy of player i ∈ I in Γ, σi , is a mapping from H to a
distribution on the set of available action, σi (h) ∈ ∆ (Ai (h)) for
each non terminal history h ∈ H\Z for which P (h) = i (complete
contingent plan).

For each strategy profile in Γ, let O (σ) the outcome of σ.
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Dynamic Games with Perfect Information

Nash Equilibrium

Definition
A Nash equilibrium of a dynamic game with perfect information Γ
is a strategy profile σ∗ such that for each i ∈ I and for each σi ,
O (σ∗) ≥i O

(
σi , σ

∗
−i
)
.

Theorem (Zermelo 1913, Kuhn 1953)
A finite dynamic game of perfect information has a pure-strategy
Nash equilibrium.
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Dynamic Games with Perfect Information

Backward Induction

Backward induction is the following procedure:

I Let L < ∞ be the maximum length of all histories;

I Find all nonterminal histories of L− 1 length and assign an
optimal action there. Eliminate unreached L-length terminal
histories and regard other L−length terminal histories as
L− 1-length terminal histories;

I Find all nonterminal histories of L− 2 length and assign an
optimal action there. Eliminate unreached L− 1-length
terminal histories and regard other L− 1-length terminal
histories as L− 2-length terminal histories;

I ....
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Dynamic Games with Perfect Information

Example (9 - Stackelberg-Cournot Game - See notes!)
....
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Dynamic Games with Perfect Information

Example (10 - Hotelling Game and Product Differentiation -
Proposed as exercise!)

I Consumers are distributed uniformly along the interval [0, 1];

I Two firms are located at the extremes and compete on prices;

I c is the cost of 1 unit of good and t is the transportation cost
by unit of distance squared;

I Consumers’payoff is U = s − p − td2 where s is the max
willingness to pay, p is the market price and d is the distance;

I Find;

1. The NE of the game when firms’location is exogenously given;

2. The SPE of the game when firms decide first their location
and then compete on prices.
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