Advanced Microeconomics

Advanced Microeconomics

ECON5200 - Fall 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Static Games with Incomplete Information

There are many circumstances in which agents have private information. Some examples are:

- A bidder does not know the other bidders' value in an auction;
- Parties do not know the voters' preferences;
- An employer does not know the skills of the employee;
- The incumbent firm does not know whether the entrant is aggressive or not;

Bayesian Games

- N players with $i \in I \equiv \{1, ..., N\}$;
- $\omega \in \Omega$ finite set of "states of nature";
- $\tau_i : \Omega \to T_i$ types (signal) profile with $t_i \in T_i$;
- ▶ $p_i : \Omega \rightarrow [0, 1]$ prior belief with $p_i (\omega | t_i) \ge 0$
- ► $\sigma \in \Delta(S) \equiv \prod_{i=1,..,N} \Delta(S_i)$ strategy profile with $\sigma_i : T_i \to \Delta(S_i)$;
- $v_{t_i} \equiv \sum_{\omega \in \Omega} p_i(\omega | t_i) u_i(\sigma, \omega)$ the expected payoff of type t_i ;

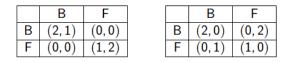
(日) (同) (三) (三) (三) (○) (○)

• $G \equiv \langle I, \Omega, \{S_i\}_i, \{T_i\}_i, \{\tau_i\}_i, \{p_i\}_i, \{v_{t_i}\}_{t_i} \rangle$

Bayesian Games: Interpretation

- Ω is a set of possible states of nature that determine the physical setup of the game (payoffs);
- *T_i* is the set of *i* 's private types that encode player *i* 's information/knowledge;
- *p_i* is player *i* 's interim belief about the state and the other players' types.

Battle of the Sexes Revisited



• $\omega \in \Omega \equiv \{\omega_1, \omega_2\}$ with $\omega_1 = meet$ and $\omega_2 = avoid$;

•
$$\tau_1(\omega_1) = \tau_1(\omega_2) = z;$$

$$\blacktriangleright m = \tau_2(\omega_1) \neq \tau_2(\omega_2) = x_2$$

- ► $p_1(\omega_1|z) = p_1(\omega_2|z) = 1/2$, $p_2(\omega_1|m) = p_2(\omega_2|x) = 1$;
- ► $(1/2) Eu_1((B, \sigma_2), \omega_1) + (1/2) Eu_1((B, \sigma_2), \omega_2)$ player 1's ex-ante utility if she plays *B*.

Bayesian Nash Equilibrium

Definition (Harsanyi (1967/1968))

A Nash equilibrium of a Bayesian Game is a Nash equilibrium of a strategic game characterized by:

- Set of players (i, t_i) with $i \in I$ and $t_i \in T_i$;
- Set of strategies for each (i, t_i) ;
- Payoff function for each (i, t_i) is given by v_{t_i} .

Following Harsanyi (1967/1968) we transform a game of *incomplete information* in a game with *imperfect information* where Nature moves first.

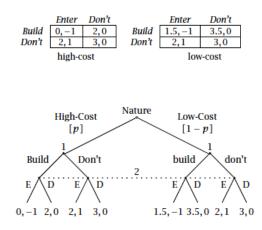
Bayesian Nash Equilibrium

Definition $\sigma^* \in \Delta(S)$ is a Bayesian Nash Equilibrium if:

$$E\left[v_{t_{i}}\left(\sigma_{i}^{*}\left(t_{i}\right),\sigma_{-i}^{*}\left(\tilde{t}_{-i}\right),\tilde{\omega}\right)\right] \geq E\left[v_{t_{i}}\left(\sigma_{i},\sigma_{-i}^{*}\left(\tilde{t}_{-i}\right),\tilde{\omega}\right)\right]$$

for each $\sigma_i \in \Delta(S_i)$, $t_i \in T_i$ and $i \in I$.

Example (5 - Building New Capacity - See notes!)



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example (6 - Public Good Provision - Proposed as exercise!)

- There are two players, i = 1, 2, who may either cooperate or defeat in the provision of a public good;
- s_i ∈ S_i ≡ {0, 1} is the players' strategy space, where 0 stands for "defeat" and 1 for "cooperate";
- If agents decide to cooperate, then they sustain a cost c_i, which is private information;
- ► Common-Knowledge: $c_i \sim P(\cdot)$ over $[\underline{c}, \overline{c}]$ with $\underline{c} < 1 < \overline{c}$;
- The individual payoff is $u_i(s_i, s_j, c_i) = \max(s_1, s_2) c_i s_i$;
- Find the BNE of the public good game.

Example (7 - Second-Price vs First-Price Auction - *Proposed as exercise*)

- n bidders whose private evaluation is <u>v</u>≤ v_i ≤ v
 i ≤ v
 i ≤ 0;
- Each bidder observes only his own evaluation but believes that the others' evaluations are iid and distributed according to F ~ [v, v];
- The player with the highest bid wins the auction by paying the second highest bid;

Find:

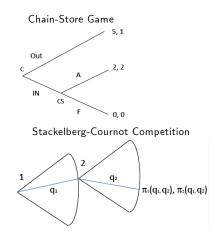
- 1. that $b_i = v_i$ is a weakly dominant strategy;
- 2. the BNE of a first-price auction (i.e. the player with the highest bid wins the auction by paying his own bid).

Dynamic Games with Perfect Information

- We study dynamic games where players make a choice sequentially;
- We assume perfect information: Each player can perfectly observe the past actions;

Best representation by using extensive form games.

Dynamic Games with Perfect Information



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamic Games in Extensive Form

- N players with $i \in I \equiv \{1, ..., N\}$;
- *H* set of histories with a^k equal to an action taken by a player:

$$\begin{aligned} - & \emptyset \in H; \\ - & \text{if } \left(a^1, \dots a^k\right) \in H \text{ then } \left(a^1, \dots a^l\right) \in H \text{ for each } l < k; \\ - & \text{if } \left(a^1, \dots a^k, \dots\right) \text{ is an infinite sequence such that} \\ & \left(a^1, \dots a^k\right) \in H \text{ for each } k \in \mathbb{N} \text{ then } \left(a^1, \dots a^k, \dots\right) \in H. \end{aligned}$$

Z set of terminal histories:

-
$$(a^1, ..., a^k) \in Z$$
 if it is an infinite sequence or $\nexists a^{k+1}$ such that $(a^1, ..., a^{k+1}) \in H$.

Dynamic Games in Extensive Form

- $P: H \setminus Z \rightarrow I$ assignment function;
- $A(h) = \{a | (h, a) \in H\}$ set of actions available to P(h);

- $v_i: Z \to \mathbb{R};$
- $\succ \Gamma \equiv \langle I, H, P, \{v_i\}_i \rangle.$

Advanced Microeconomics

Strategies

Definition

A strategy of player $i \in I$ in Γ , σ_i , is a mapping from H to a distribution on the set of available action, $\sigma_i(h) \in \Delta(A_i(h))$ for each non terminal history $h \in H \setminus Z$ for which P(h) = i (complete contingent plan).

For each strategy profile in Γ , let $\mathcal{O}(\sigma)$ the outcome of σ .

Nash Equilibrium

Definition

A Nash equilibrium of a dynamic game with perfect information Γ is a strategy profile σ^* such that for each $i \in I$ and for each σ_i , $\mathcal{O}(\sigma^*) \geq_i \mathcal{O}(\sigma_i, \sigma^*_{-i})$.

Theorem (Zermelo 1913, Kuhn 1953)

A finite dynamic game of perfect information has a pure-strategy Nash equilibrium.

Backward Induction

Backward induction is the following procedure:

- Let $L < \infty$ be the maximum length of all histories;
- Find all nonterminal histories of L 1 length and assign an optimal action there. Eliminate unreached L-length terminal histories and regard other L-length terminal histories as L - 1-length terminal histories;
- Find all nonterminal histories of L 2 length and assign an optimal action there. Eliminate unreached L - 1-length terminal histories and regard other L - 1-length terminal histories as L - 2-length terminal histories;

Advanced Microeconomics

Dynamic Games with Perfect Information

Example (9 - Stackelberg-Cournot Game - See notes!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

. . . .

Example (10 - Hotelling Game and Product Differentiation - Proposed as exercise!)

- ► Consumers are distributed uniformly along the interval [0, 1];
- Two firms are located at the extremes and compete on prices;
- c is the cost of 1 unit of good and t is the transportation cost by unit of distance squared;
- ► Consumers' payoff is U = s p td² where s is the max willingness to pay, p is the market price and d is the distance;
- ► Find;
 - 1. The NE of the game when firms' location is exogenously given;
 - 2. The SPE of the game when firms decide first their location and then compete on prices.