
Lecture 6. Contracting with Unverifiable informa-

tion
We now go back to the first lecture on mechanism design, and focus on a related problem: the

implementation problem. “The implementation problem is the problem of designing a mech-

anism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality

embodied in a social choice rule. If a mechanism has the property that, in each possible state of

the world, the set of equilibrium outcomes equals the set of optimal outcomes identified by the

social choice rule, then the social choice rule is said to be implemented by this mechanism.”1

A social choice rule specifies, for each possible state of the world, which outcomes would be

socially optimal in that state. It can be thought of as embodying the welfare judgements of a

social planner.

Implementation theory encompasses very different problems: provision of public or private

goods, auction models, monopoly pricing, optimal taxation. Very often the agents’ preferences

are privately known (as in our first lectures). But there are also many situations in which

information is complete, but nevertheless the implementation problem is not trivial. This is the

case whenever information is observable but not verifiable, that is, it is not possible to write

binding contracts that have clauses that depend on the state of the world.

Moore (1992) provides some examples. Consider a club whose members want to write the club’s

rules. These rules prescribe how in the future the members of the club will decide on the use

of the club’s budget at the beginning of each year. Say at the beginning of each year a state

of the world θ realizes (this could be the conditions of the facilities for a sport club). Let’s say

that the club wants to implement f(θ). θ is observable but not verifiable. E.g. a sport club

wants to repair each winter whichever facility is the most run down. Even though club members

anticipate that next January they will all see whether the tennis court or the football pitch is

in worse shape, this is something that is hard to verify objectively, say by a civil judge in case

the club members go into litigation. So what club members do is to set up a rule on how to
1Maskin and Sjorstrom, 2002, “Implementation Theory. Handbook of Social Choice and Welfare,” vol 1.
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decide at the beginning of each year: e.g. everyone has to vote (with a monetary punishment

in case of no vote).

The club members could avoid specifying any mechanism, and instead negotiate an outcome

each January, once θ is known. “However, although this may be ex post efficient, in general

there will be inefficiences ex ante. Consider two firms that are not vertically integrated. Let

θ1 index the upstream firm’s ex post situation (which may include such things as input prices,

productivity, and technology), and let θ2 index the downstream firm’s circumstances (e.g., its

productivity, technology, and the state of demand for the final product). As in the club example,

we suppose that, although both firms observe θ = {θ1, θ2} this is not observable to outsiders;

so a contract cannot be conditioned on θ. f(θ) denotes the desired price and quantity of the

goods traded, together with their quality, time of delivery, and so forth. An optimal f(θ)

will involve not just efficient ex post trading, but also take into account certain key ex ante

efficiency considerations such as risk sharing and/or inducing the firms to make appropriate

(non-contractible) specific investments after they have signed the contract ... the point is that

the firms must contractually specify a mechanism g which implements f(θ); leaving decisions

to ex post bargaining would in general not lead to the desired outcomes.” (Moore, 1992)

Implementability properties hinge crucially on the equilibrium concept.

Nash Implementation

The environment is {Θ, Y, I}, Θ is the set of possible states of the world; Y is the set of possible

outcomes; I is the set of agents. Each agent has rational preferences over outcomes. Agents’

preferences can depend on the state. Information is symmetric: all agents observe the state of

the world.

The problem is to design a mechanism such that for every state of the world θ, for all Nash

equilibria, the outcome belongs to f(θ) ⊆ Y .2

Definition. f(·) is monotonic if for each pair θ ∈ Θ and θ̃ ∈ Θ and for each y ∈ f(θ) we have

y ∈ f(θ̃) whenever for each player i and for each outcome z ∈ Y , if y is weakly preferred to z

2f(θ) can be a single element for each θ or include multiple elements for some/all θ - that is, f(·) can be a
function or a correspondence.
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by player i in state θ (denote this as y %θ
i z for all i ∈ N and all z ∈ Y ) then y is also weakly

preferred to z by player i in state θ̃ (y %θ̃
i z for all i ∈ I).

Definition. f(·) satisfies weak no-veto power (WNVP) if, for each state θ, outcome y must be

in the acceptable set f(θ) whenever at most one agent does not have outcome y as her preferred

outcome.

Each mechanism defines a message space Mi for each agent and an outcome function g :

×Ii=1Mi → Y .

Definition. f(·) is Nash implementable if there exists a mechanism for which, in every state

θ, all (Nash) equilibrium outcomes belong to f(θ).

Theorem. If f(·) is Nash implementable, then it is monotonic. With |I| ≥ 3 if f(·) is mono-

tonic and satisifes WNVP, then it is Nash implementable.

Proof.

Necessary condition. The first half of the theorem is proved by contradiction. Suppose f(·) is

not monotonic and is implementable. Then there exists a pair of states θ, θ̃ and an outcome y

such that:

• y ∈ f(θ), y /∈ f(θ̃),

• for all i ∈ I and all z ∈ Y , if y �θi z then y �θ̃i z.

As f(·) is assumed to be implementable and y ∈ f(θ), then there exists a mechanism M such

that y is in the set of Nash equilibrium outcomes for state θ, with some set of equilibrium

messages m∗. This implies that for all agents i and all mi ∈Mi: y �θi g(mi,m
∗
−i). But then, by

assumption, y �θ̃i g(mi,m
∗
−i), thus y is a Nash equilibrium outcome in state θ̃, thus contradicting

y /∈ f(θ̃).

Sufficient condition. The second half of the theorem is proved by construction. Consider a

mechanism M where the set of messages is {(θ, y, n)|θ ∈ Θ, y ∈ Y, n ∈ N} where N denotes the

set of all integers, with these properties:

• if all agents announce the same y and θ and y ∈ f(θ), then g(m) = y;
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• if all agents except i announce state θ and outcome y ∈ f(θ), while agent i announces

state θ̃ and outcome z, then g(m) = z if y �θi z, and g(m) = y if z �θi y;

• in all other cases the outcome of the mechanism is ỹ where outcome ỹ is the one an-

nounced by the agent who has announced the highest positive integer n.

You can check that for each state θ and outcome y ∈ f(θ), y is the outcome of a Nash equilibrium.

All is left is to show that for each state θ if ỹ /∈ f(θ) then ỹ cannot be the outcome of a Nash

equilibrium. This can be shown in 3 steps. Suppose state is θ.

1) Assume everybody announces state θ̃ and ỹ such that ỹ ∈ f(θ̃) but ỹ /∈ f(θ). Monotonicity

ensures ∃i ∈ I and a z ∈ Y such that ỹ �θ̃i z but z �θi ỹ. But then by definition of the

mechanism agent i can deviate and ensure outcome z thus ỹ is not the outcome of a Nash

equilibrium;

2) If ỹ is the result of non-unanimous announcements about state and outcome, then by defi-

nition of the mechanism there is at most 1 agent that cannot deviate and impose her preferred

outcome. All other agents can do so, by announcing their preferred outcome and an integer

higher than the integers all other agents annouce in equilibrium. Thus WNVP ensures that if

ỹ is the outcome of a Nash equilibrium then ỹ ∈ f(y);

3) If ỹ is the result of unanimous announcements about state θ̃ and outcome ỹ /∈ f(θ̃), then

some agent must find it optimal to deviate, announce the largest integer and get her preferred

outcome.

QED

Subgame-Perfect Implementation

The problem with Nash equilibria is that often there are too many of those. A way to make

the implementation problem easier is to consider a subset of Nash equilibria: Subgame-Perfect

Nash equilibria. Adding the requirement of subgame perfection allows to introduce credible

threats, thus reducing the number of equilibria.

Here we look at a somewhat special example. Consider a public-good choice problem, with 2

agents i = 1, 2 and decision y ∈ {0, 1} (y = 1 the good is produced, y = 0, it is not). A decision
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rule also specifies transfers (t1, t2) ∈ R2. Each agent i′s preferences depend on a parameter θi,

and the state of nature is θ = {θ1, θ2} ∈ Θ. Utility of agent i is: θiy + ti. θ is observed by both

agents. A decision rule is a triple {y(θ), t1(θ), t2(θ)}.

Under subgame-perfect implementation, monotonicity is not required: any outcome rule can

be implemented as a unique subgame-perfect equilibrium, with a mechanism that balances the

budget on path and may balance the budget or generate surplus off-path. 3

Consider a mechanism summarized in the following two stages:

1) agent 1 makes a report about its type: θ̂11; agent 2 observes the report and makes a report

about the type of agent 1: θ̂21; if θ̂11 = θ̂21 the game proceeds to step 2; if instead if θ̂11 6= θ̂21, then

agent 1 can choose between two options: either {x, tx −∆t,−tx −∆t} or {z, tz −∆t,−tz + ∆t},

where ∆t is large and:

θ̂11x+ tx > θ̂11z + tz,

θ̂21x+ tx < θ̂21z + tz.

2) (if θ̂11 = θ̂21): same as step 1, with reversed roles. If θ̂22 = θ̂12 then outcome
{
y
(
θ̂11, θ̂

2
2

)
, t1

(
θ̂11, θ̂

2
2

)
, t2

(
θ̂11, θ̂

2
2

)}
is implemented.

One way to satisfy these properties is to choose x = 1− z, and set x = 1 if θ̂11 > θ̂21, and x = 0

if θ̂11 < θ̂21.

3If there where more than 2 agents, it would be possible to implement with a mechanism that balances the
budget both on and off path.


